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Classical & Quantum Mechanics

Newtonian (Only valid in Cartesian)

System of 𝑁  particles, 𝑁dof = 3𝑁 , 𝑡-dependent. For each particle 𝒑𝑖 =
𝑚𝑖 ̇𝒓𝑖, where 𝒓𝑁(𝑡) = {𝒓1, …, 𝒓𝑁}

Newton’s 2nd law 𝑚𝑖 ̈𝑟𝑖 = ̇𝒑𝑖 = 𝐹𝑖,  where 𝑖 = 1, 2, …, 𝑁  𝑴 ̈𝒓𝑁 = ̇𝒑𝑁 =
𝑭 𝑁 , with 𝑴 ∈ ℝ3𝑁,3𝑁 diagonal

Newton’s 3rd Law 𝐹𝑗𝑖 = −𝐹𝑖𝑗 with 𝐹𝑖𝑗 exerted by 𝑖

Deterministic Nature Given the EOM and a force expression → deter-
ministic. At final state at 𝑡 = 𝑡fin, 𝒓𝑁(𝑡fin) and 𝒑𝑁(𝑡fin) are predictable.

Conservative Field (CF) Force is field if only 𝒓-dependent, Curl-free
(Stokes theorem 𝜕

𝜕𝒓𝑖
× 𝑭𝑖(𝒓𝑁) = 0, ∀𝑖) implies conservative. Conserv-

ative field must fulfill ∮ 𝑑𝒓𝑁 ⋅ 𝑭 𝑁(𝒓𝑁) = ∑𝑁
𝑖 ∮ 𝑑𝒓𝑖 ⋅ 𝑭𝑖(𝒓𝑁) = 0

Potential energy of CF “-” force drives towards lower 𝐸pot, time-depen-
dency to CF can be brought through 𝐸pot = 𝒱

𝑭𝑖(𝒓𝑁) = − 𝜕
𝜕𝒓𝑖

𝒱(𝒓𝑁)

Kinetic Energy 𝒦( ̇𝒓𝑁) = ∑𝑁
𝑖

𝑚𝑖 ̇𝒓𝒊
2

2 = ∑𝑁
𝑖

𝑚2
𝑖 ̇𝒓𝒊

2

2𝑚𝑖
= ∑𝑁

𝑖
𝒑2

𝑖
2𝑚𝑖

Total Energy of CF 𝒱(𝒓𝑁) + 𝒦( ̇𝒓𝑁) = 𝐸tot = const

Time-dependent 𝒱(𝒓𝑁 , 𝑡) + 𝒦( ̇𝒓𝑁) = 𝐸(𝑡)

𝑏 = (𝒓𝑖𝑗 ⋅ 𝒓𝑖𝑗)
1
2

𝜃 = arccos[
𝒓𝑗𝑖 ⋅ 𝒓𝑗𝑖

𝒓𝑗𝑖 ⋅ 𝒓𝑗𝑘
], 𝒓𝑗𝑖 ≔ 𝒓𝑖 − 𝒓𝑗

𝑭1 = 𝐺𝑚1𝑚2
𝑟2 , 𝑭 = −𝜌𝑔𝑉 𝒆𝑥, 𝑭 = 𝑞(𝑬 + ̇𝒓 × 𝑩)

𝑭 = −𝑘 ̇𝒓, 𝑭 = −𝑘(𝑥 − 𝑥𝑜)𝒆𝑥

Lagrangian (Valid in any generalized coordinates)

🖒 Enforce constraints, add artificial DOF to dynamics, Generalizing
mechanics than just point particles

Generalized Coordinate Systems any set of M scalars (eg. 𝒓, 𝛼,
dihedrals…) sufficient to specify the coordinates of all particles in the
system & exists invertible map to express 𝒒𝑖 with 𝒓𝑁 = 𝒓𝑁(𝒒𝑀) ⇔
𝒒𝑀 = 𝒒𝑀(𝒓𝑁)

Generalized coordinates/Velocities 𝑀 = 3𝑁  for 𝑁  particles 𝒒𝑀 =
{𝑞1, …, 𝑞𝑀}, ̇𝒒𝑀 = { ̇𝑞1, …, ̇𝑞𝑀} s.t. ̇𝒓𝑁 = ̇𝒓𝑁(𝒒𝑀 , ̇𝒒𝑀)

Energy (Lagrangian CF)

𝓛(𝒒𝑀 , ̇𝒒𝑀) = 𝒦(𝒒𝑀 , ̇𝒒𝑀) − 𝒱(𝒒𝑀)

Potential 𝓛(𝒒𝑀 , ̇𝒒𝑀 , 𝑡) = 𝒦(𝒒𝑀 , ̇𝒒𝑀) − 𝒱(𝒒𝑀 , 𝑡), 𝜕𝓛
𝜕𝑡 = −𝜕𝒱

𝜕𝑡

Kinetic (quadratic) 𝒦(𝒒𝑀 , ̇𝒒𝑀) = 1
2( ̇𝒒𝑀)𝑇 𝑴(𝒒𝑀) ̇𝒒𝑀

Mass-metric tensor Symmetric but not necessarily diagonal

𝑴𝑘𝑙 = ∑
𝑁

𝑖
𝑚𝑖

𝜕𝒓𝑖
𝜕𝑞𝑘

𝜕𝒓𝑖
𝜕𝑞𝑙

EOM (Euler-Lagrange) from principle of least action Physical trajec$
tory between system configurations at two time points minimizes action.

𝑑
𝑑𝑡

(
𝜕𝓛(𝒒𝑀 , ̇𝒒𝑀)

𝜕 ̇𝑞𝑚
) =

𝜕𝓛(𝒒𝑀 , ̇𝒒𝑀)
𝜕𝑞𝑚

, with 𝑚 = 1, 2, …, 𝑀

Polar coordinates ① 𝑑
𝑑𝑡(

𝜕𝓛
𝜕 ̇𝜃 ) = 𝜕𝓛

𝜕𝜃  ② 𝑑
𝑑𝑡(

𝜕𝓛
𝜕 ̇𝑟 ) = 𝜕𝓛

𝜕𝑟

Connection to Cartesian

𝓛(𝒓𝑁 , ̇𝒓𝑁) = ∑
𝑁

𝑖

𝑚𝑖 ̇𝒓𝒊
2

2
− 𝒱(𝒓𝑁)

𝑚𝑖 ̈𝒓𝒊⏟
Ⓛ

= 𝑭𝑖(𝒓𝑁)⏟
Ⓡ

Ⓛ Use Lagrangian with Cartesian coordinate and with EOM

𝑑
𝑑𝑡

(
𝜕𝓛(𝒓𝑁 , ̇𝒓𝑁)

𝜕 ̇𝑟𝑖
) = 𝑑

𝑑𝑡
( 𝜕

𝜕 ̇𝑟𝑖
(∑

𝑁

𝑖

𝑚𝑖 ̇𝒓𝒊
2

2
− 𝒱(𝒓𝑁))) = 𝑚𝑖 ̈𝒓𝒊

Ⓡ 𝜕𝓛(𝒓𝑁,𝒓̇𝑁)
𝜕𝑟𝑖

= − 𝜕
𝜕𝑟𝑖

𝒱(𝒓𝑁) = 𝑭𝑖(𝒓𝑁)

Hamiltonian (Valid in any generalized coordinates)

Configuration/conformational space ↔ coordinates of a system.
Trajectory 𝒒𝑀(𝑡) is the time-dependent evolution of a system in a
configuration space, no trajectories can cross ⇒ Liouville’s theorem
(The volume of any closed surface in phase space remains constant
as surface moves through phase space) Phase space ↔ coordinates &
momenta 𝒙2𝑀 = {𝒒𝑀 , 𝒑𝑀}, in Cartesian 𝒙2𝑁 = {𝒓𝑁 , 𝒑𝑁} Orbit 𝒙2𝑀(𝑡)
time-dependent evolution of a system in phase space 🖒QM↔CM with
Hamiltonian operator

Conjugate momenta 𝒑𝑀 = {𝑝1, …, 𝑝𝑀} with 𝑝𝑚 ≔ 𝜕𝓛(𝒒𝑀, ̇𝒒𝑀)
𝜕 ̇𝑞𝑚

Hamiltonian Function 𝓗 = 𝒑 ⋅ ̇𝒒 − 𝓛

Differential of Hamiltonian 𝑑𝓗 = ̇𝑞𝑀 ⋅ 𝑑𝑝𝑀 − ̇𝑝𝑀 ⋅ 𝑑𝑞𝑀

𝑑𝓗 = 𝑑(𝒑 ⋅ ̇𝒒) −

(
((
((
((𝜕𝓛(𝒒𝑀 , ̇𝒒𝑀)

𝜕𝒒𝑀⏟⏟⏟⏟⏟
Lagrange ṗ

⋅ 𝑑𝒒𝑀 +
𝜕𝓛(𝒒𝑀 , ̇𝒒𝑀)

𝜕 ̇𝒒𝑀⏟⏟⏟⏟⏟
Definition of p

⋅ 𝑑 ̇𝒒𝑀

)
))
))
))

Energy (Hamiltonian CF) optional time-dependence for 𝒱

𝓗(𝒒𝑀 , 𝒑𝑀) = 𝒦(𝒒𝑀 , 𝒑𝑀)⏟⏟⏟⏟⏟
kinetic energy

+ 𝒱(𝒒𝑀)⏟
potential energy

= 𝐸 = const

EOM For 𝑚 = 1, …, 𝑀  there are 2𝑀 = 6𝑁  1st-order equations

{{
{
{{ ̇𝑞𝑚 ≔ 𝜕𝓗(𝒒𝑀,𝒑𝑀)

𝜕𝑝𝑚

̇𝑝𝑚 ≔ −𝜕𝓗(𝒒𝑀,𝒑𝑀)
𝜕𝑞𝑚

Connection to Cartesianℋ(𝒓𝑁 , 𝒑𝑁 , 𝑡) = ∑𝑁
𝑖

𝒑2
𝑖

2𝑚𝑖
+ 𝒱(𝒓𝑁 , 𝑡)⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐸(𝑡)

𝜕𝓗(𝒓𝑁 , 𝒑𝑁)
𝜕𝒑𝑖

= 𝒑𝑖
𝑚𝑖

=! ̇𝑟𝑚
⏟

Cartesian momentum

𝜕𝓗(𝒓𝑁 , 𝒑𝑁)
𝜕𝒓𝑖

=
𝜕𝒱(𝒓𝑁)

𝜕𝒓𝑖
= −𝑭𝑖 =! − ̇𝒑𝑖⏟⏟⏟⏟⏟

Newtonian equation
of motion

EOM in Phase Space with IC 𝒙2𝑀(𝑡𝑜), 𝑱  Hamiltonian matrix

𝒙̇2𝑀(𝒙2𝑀) = 𝑱
𝑑𝓗(𝒙2𝑀)

𝑑𝒙2𝑀 , 𝑱 = ( 0
−𝑰𝑀

𝑰𝑀

0 )

Of a N-particle system

ℋ̂(𝒓𝑁 , 𝒑𝑁 , 𝑡) = − ∑
𝑁

𝑖

ℏ2

2𝑚𝑖

𝜕2

𝜕𝒓2
𝑖⏟

Laplacian Δᵢ

+ 𝒱(𝒓𝑁 , 𝑡)

Constraints (implicit force law on trajectory)

Active force with explicitly known force law, free. Reactive force
enforces the constraint. Holonomic constraint 𝐶(𝒒𝑀 , 𝑡) ≡ 0 only coor-
dinates and time, not on velocities Static holonomic 𝐶(𝒒𝑀) ≡ 0

Approach ① Generalized Coordinates

Replacement for the EOM of the constrained M-th coordinate, with 𝐾 =
𝑀 − 1 free coordinates.

𝑞𝑀 = 𝑄
̇𝑞𝑀 = 0

We formulate Lagrangian for the K free coordinates.

𝓛(𝒒𝐾 , ̇𝒒𝐾 ; 𝑄) = 𝒦(𝒒𝐾 , ̇𝒒𝐾 ; 𝑄) − 𝒱(𝒒𝐾 ; 𝑄)

Formulate K Lagrangian EOM for the free coordinates:

𝑑
𝑑𝑡

(
𝜕𝓛(𝒒𝐾 , ̇𝒒𝐾 ; 𝑄)

𝜕 ̇𝑞𝑚
) =

𝜕𝓛(𝒒𝐾 , ̇𝒒𝐾 ; 𝑄)
𝜕𝑞𝑚

, with 𝑚 = 0, 1, …, 𝐾

② Lagrange Multipliers added constraint 𝐶(𝒓𝑁) ≡ 0 explicitly to
Cartesian Lagrangian

constraint Lagrangian
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞𝓛(𝒓𝑁 , ̇𝒓𝑁 , 𝜆) = 𝓛(𝒓𝑁 , ̇𝒓𝑁) + 𝜆 ⋅ 𝐶(𝒓𝑁)⏟⏟⏟⏟⏟

does not change Lagrangian
value, contribute to only derivatives

with 𝜆 = 𝜆(𝑡) as a function of time which modulates the magnitude of
the reactive force. Determine 𝜆 with 𝑑2

𝑑𝑡2 𝐶(𝒓𝑁) =! 0

③ Gauss Principle of Least Constraint (more general, equivalent with
the virtual-work principle of D’Alembert)

Quantum Mechanics

As waves (interference patterns in two-slit)
• 𝒑 = ℏ𝒌 wave vector 𝒌 of a particle 𝑘 = 2𝜋

𝜆  (1D)

As particles (blackbody radia. photo-electric effect)
• 𝐸 = ℏ𝜔 energy packed in a photon ∼ angular frequency 𝜔.
• 𝐸 = ℎ𝜈 with frequency 𝜈 = 𝜔

2𝜋

Copenhagen Interpretation System exists in all possible states
simultaneously (superposition). Measurement causes it to randomly
collapse into one state (wave function collapse).

Correspondence principle CM as limit case of QM (ℎ → 0). Observ-
ables mappable to QM Hermitian operators.
• ① 𝒓𝑖 →

QM
𝒓𝑖 ② 𝒑𝑖 → −𝑖ℏ 𝜕

𝜕𝒓𝑖
 ③ 𝒑2

𝑖 → −ℏ2 𝜕2

𝜕𝒓2
𝑖

 ④ 𝐸 → 𝑖ℏ 𝜕
𝜕𝑡

Particles as waves Wave as particles
𝒑 = ℏ𝒌 𝐸 = ℏ𝜔

take position-gradient take time derivative

→ −𝑖ℏ 𝜕
𝜕𝒓

𝑒𝑖(𝒌⋅𝒓−𝜔𝑡)

= −𝑖ℏ(𝑖𝒌)𝑒𝑖(𝒌⋅𝒓−𝜔𝑡)

= 𝒑𝑒𝑖(𝒌⋅𝒓−𝜔𝑡)

→ 𝑖ℏ 𝜕
𝜕𝑡

𝑒𝑖(𝒌⋅𝒓−𝜔𝑡)

= −𝑖ℏ(−𝑖𝜔)𝑒𝑖(𝒌⋅𝒓−𝜔𝑡)

= 𝐸𝑒𝑖(𝒌⋅𝒓−𝜔𝑡)

Operator acts on a wave function and returns another wave function,
Hermitian operator has real expectation values.

∫ 𝑑𝒓Ψ∗
1𝒜Ψ2 = (∫ 𝑑𝒓Ψ∗

2𝒜Ψ1)
∗

𝔼[𝒜] =at t ⟨𝒜⟩ ≔ ∫ 𝑑𝒓𝑁Ψ∗(𝒓𝑁 , 𝑡)𝒜(𝑡)Ψ(𝒓𝑁 , 𝑡)

TDSE associated with CM through correspondence principle

ℋ̂(𝑡)Ψ(𝒓𝑁 , 𝑡) = 𝑖ℏ
𝜕Ψ(𝒓𝑁 , 𝑡)

𝜕𝑡

TISE separable wave function Ψ(𝒓𝑁 , 𝑡) = Ψ(𝒓𝑁)𝑇 (𝑡) with 𝑇 (𝑡) ≔ 𝑒−𝑖𝜔𝑡

pulsation by rotation in ℂ-plane. 𝑑𝑇(𝑡)
𝑑𝑡 = 𝐸

𝑖ℏ𝑇 (𝑡) = −𝑖𝜔𝑇 (𝑡)

ℋ̂Ψ𝑘(𝒓𝑁) = 𝐸Ψ𝑘(𝒓𝑁) with ∫ 𝑑𝒓𝑁 |Ψ(𝒓𝑁)|2 =! 1

Derivation ℋ̂Ψ(𝒓𝑁)𝑇 (𝑡) = 𝑖ℏΨ(𝒓𝑁)𝑑𝑇(𝑡)
𝑑𝑡 = 𝑖ℏΨ(𝒓𝑁)𝐸

𝑖ℏ𝑇 (𝑡)

TISE solution for a given 𝒱(𝒓𝑁). Defines a real othonormal basis set.

Ψ(𝒓𝑁 , 𝑡) = ∑
𝑘

𝑐𝑘Ψ𝑘(𝒓𝑁) ⋅ 𝑒−𝑖𝜔𝑘𝑡

• value pairs {𝐸𝑘, Ψ𝑘} (EV, associated eigenfunction)
• complex coefficients 𝑐𝑘, 𝜔𝑘 = 𝐸𝑘

ℏ

QMChem atom/molec as many-particle system (nuclei+𝑒−)

Difficulties High cost, limited configurations. Isolated molecules in
vacuum only or simple solvation. Approximations No 𝑡-dependence,
QM. Born-Oppenheimer (motionless nuclei). Neglect electron correla-
tion (partially corrected). Basis set projection to enable for numerical
linear algebra sol.

Thermodynamics Basics

Extensive additive, e.g. volume, mass, no. molecules of a species i,
𝑈, 𝐹 , 𝑆, heat capacity

Intensive not additive, local only! e.g. 𝑃 , 𝑇 , 𝜌, chemical potential,
molar(÷no.)/specific(÷mass) heat capacity, 𝜅𝑇 > 0, 𝛼𝑃  (usually > 0)

Work 𝑊 = 𝑊𝑣 + 𝑊𝑛 volume & non-volume (e.g. electrical)
• 𝛿𝑊𝑣 ≔ −𝑃ext ⋅ 𝑑𝑉  in closed system (deri. from 𝑃ext ≔ 𝐹ext

Σ )

Chemical Potential Known levels {𝜀𝑖} & degeneracies {𝑔𝑖}⇒ 𝜇 deter-
mined by the condition 𝑁 = ∑ 𝑛𝑖

Thermodynamic Properties (with FD) isothermal com-
pressibility, isobaric expansivity, isochoric heat capacity

𝜅𝑇 = − 1
𝑉 (𝜕𝑉

𝜕𝑃 )
𝑁,𝑇

= 1
𝜌( 𝜕𝜌

𝜕𝑃 )
𝑇

= (𝜕 ln 𝜌
𝜕𝑃 )

𝑇
⇒
FD

(
ln(𝜌2

𝜌1
)

𝑃2−𝑃1
)

𝛼𝑃 = 1
𝑉 (𝜕𝑉

𝜕𝑇 )
𝑃

= −1
𝜌( 𝜕𝜌

𝜕𝑇 )
𝑃

= −(𝜕 ln 𝜌
𝜕𝑇 )

𝑃
⇒
FD

−(
ln(𝜌2

𝜌1
)

𝑇2−𝑇1
)

𝑐𝑉 = 1
𝑁 (𝜕𝑈

𝜕𝑇 )
𝑉

⇒
FD

𝑐𝑉 ≈ 𝐸tot,2−𝐸tot,1
𝑇2−𝑇1

+ 𝑐V, QM-corr

(𝜕𝑁
𝜕𝜇 )

𝑉 ,𝑇
= 𝑁𝜅𝑇

𝜈

Enthalpy 𝐻 = 𝑈 + 𝑃𝑉 , 𝑑𝐻 = 𝑑𝑈 + 𝑉 𝑑𝑃 + 𝑃𝑑𝑉

Isobaric (𝛿𝑊𝑛 = 0, 𝑑𝑃 = 0)
• 𝑑𝐻 = 𝑑𝑈 + 𝑉 𝑑𝑃 + 𝑃𝑑𝑉 = (𝛿𝑊𝑣 + 𝛿𝑄) + 𝑃𝑑𝑉 = 𝛿𝑄

Heat Capacity 𝛿𝑄 needed to raise system temperature by 1 degree.
For all system 𝐶𝑝 > 𝐶𝑉 > 0, ideal gas 𝐶𝑝 − 𝐶𝑉 > 𝑛𝑅

Type Heat capacity Relation (for closed, uncoupled sys-
tem)

Isochoric 𝐶𝑉 ≔ (𝜕𝑈
𝜕𝑇

)
𝑛,𝑉

𝑑𝑈 = 𝛿𝑄 = 𝐶𝑉 𝑑𝑇



Isobaric 𝐶𝑃 ≔ (𝜕𝐻
𝜕𝑇

)
𝑛,𝑃

𝑑𝐻 = 𝛿𝑄 = 𝐶𝑃 𝑑𝑇

Ideal Gas Assumption

Negligible interactions (no medium-range attractions or short-range
repulsions). Point-like particles only interact via elastic collisions, ran-
domizing velocities. Valid when molar density 𝑛

𝑉  is low, meaning low 𝑃𝑇
ratio (i.e. low pressure, high temperature) Ideal-gas equation of state
𝑃𝑉 = 𝑛𝑅𝑇

• Ideal Monoatomic Gas 𝐸tot = 𝐸kin + 𝐸pot, only kinetic

• Real gas (van der Waals) with corrections for interactions

𝑃 = 𝑛𝑅𝑇
𝑉 − 𝑛𝑏⏟

effective volume 
for particles

attractive forces 
reduce the effective pressure

⏞⏞⏞⏞⏞
−𝑎( 𝑛

𝑉
)

2

without ideal gas: particles interactions via ①approximate analytical
theories (perturb) ②MD (sample finite Boltzmann-weighted ensemble
numerically)

First Law of Thermodynamics

𝑑𝑈⏟
independent of path

= 𝛿𝑊 + 𝛿𝑄⏟⏟⏟⏟⏟
dependent on path

𝒱(𝒓𝑁) + 𝒦( ̇𝒓𝑁) = 𝐸 = const

Isochoric (𝛿𝑊𝑛 = 0, 𝑑𝑉 = 0) ⇒ 𝑑𝑈 = 𝛿𝑊⏟
 = 0

+ 𝛿𝑄 = 𝛿𝑄

Second Law of Thermodynamics

𝑑𝑆⏟
independent of path

= 𝛿𝑄
𝑇

+ 𝛿Σ

Internal entropy production 𝛿Σ =
{{
{
{{>0  spontanenous + irreversible

=0  reversible
<0  unnatural

Reversible Process 𝛿𝑄 = 𝑇𝑑𝑆

Fundamental Equation of Thermodynamics

𝑑𝑈 = −𝑃𝑑𝑉 + 𝑇𝑑𝑆 + ∑
𝑁

𝑖
𝜇𝑖𝑑𝑛𝑖

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
☺

where 𝜇𝑖 ≔ ( 𝜕𝑈
𝜕𝑛𝑖

)
{𝑛𝑗},𝑉 ,𝑆

 or 𝜇𝑖 ≔ ( 𝜕𝐹
𝜕𝑛𝑖

)
{𝑛𝑗},𝑉 ,𝑇

• 𝜇𝑖 ≔ ( 𝜕𝐺
𝜕𝑛𝑖

)
{𝑛𝑗},𝑃,𝑇

Integrated form (path-independent)

𝑈 = −𝑃𝑉 + 𝑇𝑆 + ∑
𝑁

𝑖=1
𝜇𝑖𝑛𝑖

Spontaneity Condition of Processes

𝛿𝑊 + 𝛿𝐷 ≥ −𝑃𝑑𝑉 + ∑
𝑁

𝑖=1
𝜇𝑖𝑑𝑛𝑖

Free Energy

Helmholtz 𝐹 = 𝑈 − 𝑇𝑆
• 𝑑𝐹 = −𝑃𝑑𝑉 − 𝑆𝑑𝑇 + ∑𝑁

𝑖 𝜇𝑖𝑑𝑛𝑖

Gibbs 𝐺 = 𝐹 + 𝑃𝑉 = 𝑈 + 𝑃𝑉 − 𝑇𝑆 = 𝐻 − 𝐹𝑆
• 𝑑𝐺 = 𝑉 𝑑𝑃 − 𝑆𝑑𝑇 + ∑𝑁

𝑖 𝜇𝑖𝑑𝑛𝑖

Derivation 𝑑𝐹 = 𝑑𝑈 − 𝑆𝑑𝑇 − 𝑇𝑑𝑆 =
☺

…

Derivation 𝑑𝐺 = 𝑑𝑈 + 𝑉 𝑑𝑃 + 𝑃𝑑𝑉 − 𝑆𝑑𝑇 − 𝑇𝑑𝑆 =
☺

Calculation methods free energy related to 𝑍, can be formally written
based on ensemble average. Problem Convergence of ensemble aver-
age in MD Challenge How to sample all relevant parts of phase space,
irr. of relative free energies. How to ensure sufficient transitions irr.
barrier heights.

Thermodynamic (Physical & Real , DOF INV)

Δ𝐹 ⇒ change of thermodynamic BC, Δ𝑇 , Δ𝑉 , Δ𝑛

Temperature/Pressure Integration more robust ①NVT simulations at
diff 𝑇 /𝑉 , computer 𝐸/𝑃  ②integrate numerically over 𝑇 /𝑉

𝜕(𝐹
𝑇 )

𝜕 1
𝑇

= ⟨𝐻⟩𝑇 ⇒
∫ ⋅𝑑 1

𝑇 𝐹(𝑇𝐵)
𝑇𝐵

− 𝐹(𝑇𝐴)
𝑇𝐴

= ∫
𝑇 −1

𝐵

𝑇 −1
𝐴

⟨𝐻⟩𝑇 𝑑(𝑇 −1)

𝜕𝐹
𝜕𝑉

= −𝑃 ⇒
∫ ⋅𝑑𝑉

𝐹(𝑉𝐵) − 𝐹(𝑉𝐴) = − ∫
𝑉𝐵

𝑉𝐴

𝑃 ⋅ 𝑑𝑉

Particle Insertion estimate 𝜇excess 🖓fails for dense, large particles ↔
no spontaneously formed cavities large enough to give low enough
energy of the inserted particle. Low energy (=good) configuration are
hardly sampled. (can slowly grow particles to cope, TI)

𝜇excess = −𝑘𝐵𝑇 ln⟨exp(−𝒱(𝒓test)
𝑘𝐵𝑇

)⟩𝒓1,…,𝒓𝑁

For a series of equilibrium configurations of 𝑁  particles ① for step 𝑖 <
𝑀  randomly add 1 test particle 𝒓test in step 𝑖 (state A: N particles; state
B: N+1 particles) ② estimate Δ𝐹 = 𝐹(𝑁 + 1) − 𝐹(𝑁) with the pertur-
bation formula above

Δ𝐹 = −𝑘𝐵𝑇 ln[∫⟨exp(−𝒱(𝒓test)
𝑘𝐵𝑇

)⟩𝒓1,…,𝒓𝑁
𝑑𝒓𝑁+1]

then use 𝒱(𝒓test) ≔ 𝒱(𝒓1, …, 𝒓𝑁+1) − 𝒱(𝒓1, …, 𝒓𝑁)

Conformational (Physical & Virtual, DOF −1)

Counting configurations Usable for conformational, alchemical and
thermodynamic changes 🖒 simple. 🖓 Both states of interest must
appear. Almost never converges within finite trajectories. Insufficient
sampling of high energy conformations, insufficient transitions when
barrier between states is high. (in eq. 𝑓  binary assignment function)

Δ𝐹𝐵𝐴 = 𝐹𝐵 − 𝐹𝐴 = −𝑘𝐵𝑇 ln[⟨𝑓𝐵(𝒓)⟩
⟨𝑓𝐴(𝒓)⟩

] = −𝑘𝐵𝑇 ln[𝑁𝐵
𝑁𝐴

]

Umbrella sampling biased potential as position restraint, makes un-
likely configuration favorable. Ensures all relevant parts are sampled
and sufficient transitions occur 🖓hard to design ①modify Hamiltonian
to account for bias ② roll back to unbiased version before direct count-
ing

ℋbias(𝒓, 𝒑) ≔ ℋ(𝒓, 𝒑) + 𝒱bias(𝒓)

𝑤𝑖 = 1
𝑁

→
with bias

∑
𝑁

𝑗=1
𝑤𝑗 = 1, 𝑤𝑖 =

exp(+𝒱bias(𝒓𝑖)
𝑘𝐵𝑇 )

∑𝑁
𝑗=0 exp(+𝒱bias(𝒓𝑗)

𝑘𝐵𝑇 )
⏟⏟⏟⏟⏟⏟⏟⏟⏟

normalization

Δ𝐹𝐵𝐴 = 𝐹𝐵 − 𝐹𝐴 = −𝑘𝐵𝑇 ln[
⟨𝑓𝐵(𝒓)⋅ exp(+𝒱bias(𝒓)

𝑘𝐵𝑇 )⟩bias

⟨𝑓𝐴(𝒓)⋅ exp(+𝒱bias(𝒓)
𝑘𝐵𝑇 )⟩bias

]

Alchemical (Unphysical, simulation-only! DOF +1)

TI useful for alchemical, conformational and thermodynamic free-en-
ergy differences. 🖓 fails at orthogonal barrier/𝜆 insufficiently smooth.
Couple endstates ℋ(𝒓, 𝒑; 𝜆) ≔ (1 − 𝜆)ℋ𝐴(𝒓, 𝒑) + 𝜆ℋ𝐵(𝒓, 𝒑). For
NPT ensemble, and ⟨⋅⟩𝜆 ensemble average at a given 𝜆

Δ𝐺 = ∫
1

0
𝑑𝜆⟨𝜕ℋ

𝜕𝜆
⟩

𝜆

Connected to physical Δ𝐺 through thermodynamic cycles, two sepa-
rate TI calculations for a reaction in different phases, then compare the
relative hydration energy.

Hamiltonian Replica Exchange ① Do a given number of simulation
steps ② MC exchange between neighbouring replicas (𝜆-points) 🖒
Smoothen 𝜆 curve.

Δ ≔
(ℋ(𝒓𝑗 ; 𝜆𝑖) − ℋ(𝒓𝑖 ; 𝜆𝑗)) − (ℋ(𝒓𝑗 ; 𝜆𝑗) − ℋ(𝒓𝑖 ; 𝜆𝑖))

𝑘𝐵𝑇

𝑝(𝜆𝑖 ⇔ 𝜆𝑗) = {1  for Δ ≤ 0
𝑒−Δ  for Δ > 0

Free-Energy Perturbation info from adjacent 𝜆-points 🖓 small enough
Δ𝜆 to have overlap between adjacent points

Δ𝐹Δ𝜆 = −𝑘𝐵𝑇 ln[⟨exp(−ℋ(𝒓, 𝒑; 𝜆 + Δ𝜆) − ℋ(𝒓, 𝒑; 𝜆)
𝑘𝐵𝑇

)⟩𝜆]

Combinatorics & Statistics

• (𝑝 + 𝑞)𝑁 = ∑𝑁
𝑛=1(

𝑁
𝑛 )𝑝𝑛𝑞𝑁−𝑛

• ln 𝑁! = ln(∏𝑁
𝑛=1 𝑛) ≈ ∫𝑁

1
𝑑𝑥 ln 𝑥= 𝑁 ln 𝑁 − 𝑁 + 𝑂(ln 𝑁)

• 𝛿𝑥,𝑥0
= 1, if 𝑥 = 𝑥0 otherwise 0 (unitless)

• 𝛿(𝑥) = 0, ∀𝑥 ≠ 0, ∫∞
−∞

𝑑𝑥𝛿(𝑥) =! 1 (inv unit) or defined as 𝛿(𝑥) =
𝑑Θ(𝑥)

𝑑𝑥 , Θ(𝑥) = 1 if 𝑥 > 0, otherwise 0. As limit case of normalized
binning function, box gets ∞-thin/narrow at Δ𝑥 → 0. Property
∫∞

−∞
𝑑𝑥𝑓(𝑥)𝛿(𝑥 − 𝑎) = 𝑓(𝑎)

• CLT For large 𝑁 , the mean of 𝑁  independent r.v. converges to a
normal distribution with mean 𝜇 and variance 𝜎2

𝑁  (micro property has
𝜇, 𝜎2 ⇒ macro observable peaked at 𝜇)

𝑃(𝑋) ≔ 1
(2𝜋)1

2 𝜎̃
𝑒− (𝑋−𝜇)2

2𝜎̃2 ,  for 𝑥 ∈ ℝ, with 𝜎̃2 = 𝑁−1𝜎2

• De Moivre (Binomial CLT)

(𝑁
𝑘

)𝑝𝑘𝑞𝑁−𝑘 ≈ 1√
2𝜋𝑁𝑝𝑞

𝑒− (𝑘−𝑁𝑝)2
2𝑁𝑝𝑞

with 𝑝, 𝑞 > 0 and 𝑝 + 𝑞 = 1.

Combinatorical Problems

Distinguishable

𝑁sel = (𝐾
𝑁

) = 𝐾!
𝑁!(𝐾 − 𝑁)!

,  k choose n

𝑁par = ( 𝐾
𝑛1, 𝑛2, …, 𝑛𝑀

) = 𝐾!
∏𝑀

𝑚 𝑛𝑚!

𝑁ass = 𝑀𝐾

• Select N elem from set of K, 𝐾 ⋅ …(𝐾 − 𝑁 + 1), divide by permuta-
tions 𝑁! (𝑁sel = 𝑁par at 𝑀 = 2, 𝑛1 = 𝑁, 𝑛2 = 𝐾 − 𝑁 )

• Partition a set of K elem into M subsets of 𝑛1, …, 𝑛𝑀  elem, M subsets
each with 𝑛𝑖! permutations to divide
‣ 6 diff fruits into 𝑀 = 3 subsets of 1, 2 and 3, 𝑁par = 6!

1!⋅2!⋅3!
• Assign K objects to M sets. e.g. binary bit assignment, each set 𝑚𝑖 as

a digit/bit, 𝐾 objects values {0, 1}

Indistinguishable distribute K objects into M sets.

𝑁dis = (𝐾 + 𝑀 − 1
𝐾

) = (𝐾 + 𝑀 − 1)!
𝐾!(𝑀 − 1)!

𝑋 ∼ 𝑝(𝒙) = ℙ[𝑋 = 𝒙] 𝔼[𝑋] Var[𝑋]

Ber(𝑝) 𝑝𝑥(1 − 𝑝)1−𝑥 𝑝 𝑝(1 − 𝑝)

Bin(𝑛, 𝑝) (𝑛
𝑘 )𝑝𝑘(1 − 𝑝)𝑛−𝑘 𝑛𝑝 𝑛𝑝(1 − 𝑝)

Poisson(𝜆) 𝑒−𝜆 𝜆𝑘

𝑘! 𝜆 𝜆

Geom(𝑝) 𝑝(1 − 𝑝)𝑘−1 1
𝑝

1−𝑝
𝑝2

𝒰([𝑎, 𝑏])
{

1
𝑏−𝑎 if 𝑥 ∈ [𝑎, 𝑏]
0 else

𝑎+𝑏
2

1
12(𝑏 − 𝑎)2

Exp(𝜆)
{𝜆𝑒−𝜆𝑥 if 𝑥 ≥ 0

0 else

1
𝜆

1
𝜆2

𝒩(𝜇, 𝜎2) 1√
2𝜋𝜎2 exp(− (𝑥−𝜇)2

2𝜎2 ) 𝜇 𝜎2

Stochastic Processes

corresponds to a sequence of values 𝑋𝑁 = {𝑥𝑖 | 𝑖 = 1, 2, …, 𝑁} (or
continuous 𝑋𝑡 = {𝑥𝑡 | 𝑡 ∈ ℝ+}), values in sequence occur randomly
and distributed deterministically (i.e. well-defined 𝑝(𝑥𝑡+𝑢, 𝑥𝑡))

Uniform Process

Pseudo-random numbers (MCG×congruential, Mersenne Twister)
generates non-correlated uniform real numbers over [0, 1). ☠Machine
precision involves non-uniformity already. No single necessary and
sufficient test!
• ① Uniformity repeats 𝜒2 test for 𝑁 > 10 ⋅ #bin = 10𝐾

𝜒2 = 1
𝐾

∑
𝐾

𝑘

[𝑛𝑘 − 𝐾−1𝑁]2

𝐾−1𝑁

1 − 𝜒2 < 2√
𝐾

• ② Correlation for 𝑘 points ⟨𝑥𝑖𝑥𝑖+𝑘⟩𝑖 ≔ 1
𝐾−𝑘 ∑𝐾−𝑘

𝑖=1 𝑥𝑖𝑥𝑖+𝑘

𝐶(𝑘) =
⟨𝑥𝑖𝑥𝑖+𝑘⟩𝑖 − ⟨𝑥𝑖⟩𝑖⟨𝑥𝑖+𝑘⟩𝑖

⟨𝑥𝑖𝑥𝑖⟩𝑖 − ⟨𝑥𝑖⟩𝑖⟨𝑥𝑖⟩𝑖

• No correlation ⟨𝑥𝑖𝑥𝑖+𝑘⟩𝑖 − ⟨𝑥𝑖⟩𝑖⟨𝑥𝑖+𝑘⟩𝑖 =! 0 → 𝐶(𝑘) = 0

Binomial Process

Bernoulli process independent successive trials and thus indepen-
dent, observing 𝑛 successes ⇔ Binomial distribution

Random Walk direction of diff steps are uncorrelated

In 1D Random walk each step of length 𝑧 is a Bernoulli process 𝑝 ↔
a step to right.

𝐸[𝑍] = 𝑁 ⋅ (2𝑝 − 1)𝑧, Var[𝑍] = 4𝑁 ⋅ 𝑝(1 − 𝑝)𝑧2

Probability of a given net move 𝑍 over 𝑁  steps
• Net displacement to right 𝑀(𝑛) = 𝑛 − (𝑁 − 𝑛) (right - left)



𝑃𝑏(𝑛; 𝑝) = (𝑁
𝑛

)𝑝𝑛(1 − 𝑝)𝑁−𝑛  for 𝑛 ∈ [𝑁]

𝑃 (𝑀) = 𝛾𝑀+𝑁 ⋅ 𝑃𝑏(
𝑚 + 𝑛

2
; 𝑝)

= 𝛾𝑀+𝑁 ⋅ ( 𝑁
𝑁+𝑀

2
)𝑝𝑛(1 − 𝑝)𝑁−𝑁+𝑀

2

De Moivre

𝑃(𝑀) ≔ 𝛾𝑀+𝑁 ⋅ 𝑃𝑏(
𝑚 + 𝑛

2
; 𝑝)

≈ 𝛾𝑀+𝑁 ⋅ 1
√1

2𝜋𝑁𝑝(1 − 𝑝)
𝑒−

(𝑀+𝑁
2 −𝑁𝑝)

2

2𝑁𝑝(1−𝑝)

≈ 𝛾𝑀+𝑁 ⋅ 1
√1

2𝜋𝑁𝑝(1 − 𝑝)
𝑒− (𝑀+𝑁⋅(1−2𝑝))2

8𝑁𝑝(1−𝑝)

Symmetric 1D (𝑝 = 0.5) mean effec displacement 0

• 𝑃(𝑀) = 𝛾𝑀+𝑁 ⋅ ( 𝑁
𝑁+𝑀

2
)2−𝑁

• Var1
2 [𝑍] = 𝑁 1

2 𝑧 De Moivre 𝑃(𝑀) ≈ 𝛾𝑀+𝑁 ⋅ 1
√1

2𝜋𝑁
𝑒−𝑀2

2𝑁

• RW 3D Approach ① generate Δ𝑥𝑖 uniformly & uncorrelatedly 🖓cube-
corner (walk of variable size & anisotropy) ② Generate 3D coord
for 𝒓 directly—rescale or discard for fixed steps (inefficient) ③ Use
normally distributed Δ𝑥𝑖, rescale to Δ𝑟, no rejection needed

• In Polar, (Δ𝑥, Δ𝑦, Δ𝑧)𝑇 = Δ𝑟(cos 𝜃 cos 𝜑, cos 𝜃 sin 𝜑, sin 𝜃)𝑇 , no rejec-
tion and 𝜑 ∼ 𝒰([0, 2𝜋)), 𝑢 ∼ 𝒰([−1, 1)), 𝜃 = arccos(𝑢)

Gaussian Process (Continuous)

Cont-Time White-Noise (CTWN) 𝑥𝑡 ∼ 𝒩(0, 𝜎2),  ∀𝑡 needs to be ①𝜇 =
0 ② const std dev ③ 𝑥𝑡 and 𝑥𝑡+𝑢 uncorrelated ∀𝑢.

Wiener Process (Brownian) 𝑁  i.i.d r.v. 𝜉𝑘 ∼ 𝒩(0, 1) for 𝑡 ∈
[0, 1], 𝑊 (𝑁)

𝑡 ≔ 1√
𝑁

∑⌊𝑁𝑡⌋
𝑘=1 𝜉𝑘,   𝑊𝑡 = lim𝑁→∞ 𝑊 (𝑁)

𝑡

• ①unit of 𝑊𝑡 is 1√
𝑡  ②cont ③not diff-able in 𝑡

• ④incre are Gaussian, ∀𝑡 > 0, 𝑢 ≥ 0, (𝑊𝑡+𝑢 − 𝑊𝑡) ∼ 𝒩(0, 𝑢), and in-
dependent, ∀𝑠 < 𝑡, 𝑊𝑡+𝑢 − 𝑊𝑡 independent of 𝑊𝑠

• ⑤scale inv, scaled 1
𝛼𝑊𝛼2𝑡 still Wiener with 𝛼 ≠ 0

Statistical Physics

Microstate choice made for all variables (huge amount). Intrinsically
equally probable microstates, quantum states 𝑚 ∈ {0, 1, …, 𝑀 − 1},
phase-space volume elements 𝒙2𝑁𝑑𝒙2𝑁 . Macrostate choice made
for independent variables eg. 𝒁 = {𝑛, 𝑉 , 𝑇}, projection of huge no.
microstates. Compatibility by impose ①system constraints: affects
system individually ②ensemble constraints: collectively

Assignment vector 𝒎 ≔ {𝑚1, 𝑚2, …, 𝑚𝑘}

Population vector defines one possible way to distribute 𝒏 ≔
{𝑛1, 𝑛2, …, 𝑛𝑀} with ∑𝑀

𝑚=1 𝑛𝑚 =! 𝐾 no. objects assigned to set 𝑚 is
𝑛𝑚

Map 𝒎 to 𝒏 (𝑁dis ≤ 𝑁ass and 𝑁dis ≪ 𝑁ass for large 𝐾, 𝑀 )

𝑛𝑚(𝒎) = ∑
𝐾

𝑘=1
𝛿𝑚𝑘,𝑚⏟

is object k assigned 
to subset m?

Statistical weight 𝑊𝑘 of population vector 𝒏 when distributing 𝐾
objects into 𝑀  bins ↔ no. assignments compatible with the corre-
sponding populations. For 𝒏, 𝑁dis choices and ∑𝑛 𝑊𝐾(𝒏) = 𝑁ass

𝑊𝑘(𝒏) = 𝐾!
∏𝑀

𝑚=1 𝑛𝑚!
≡ 𝑁par

• Brute-force 𝑂(𝑀𝐾), 𝑊𝑘(𝒏) ≔ ∑𝑁ass=𝑀𝐾

𝒎 𝛿𝒏(𝒎),𝒏

Example: Given a system with three states 𝑀 = 3 and an ensemble
with six systems 𝐾 = 6.

• How many possible distinct assignment vectors are there?

𝑁ass = 𝑀𝐾 = 36 = 729

• What is the number of possible distinct distributions (i.e. number of
possible population vectors)?

𝑁dis = (𝐾 + 𝑀 − 1)!
𝐾!(𝑀 − 1)!

= (6 + 3 − 1)!
6!(3 − 1)!

= 8!
6!2!

= 28

• What is the statistical weight of a population that consists of 𝒏 =
{3, 2, 1}?

𝑊𝐾=6(𝒏 = {3, 2, 1}) = 𝐾!
∏𝑀−1

𝑚=0 𝑛𝑚!
= 6!

3! ⋅ 2! ⋅ 1!
= 60

Postulate of a priori Equiprobability All microstates equally probable,
except when limited by macroscopic constraints ⇒ ①Without con-
straints, all 𝒎assign equally probable ②probability of 𝒏pop in a collection
of random ensembles ∼ statistical weight of it

Distribution Vector 𝒑 = {𝑝0, …, 𝑝𝑀−1} 𝑁dis choices. (Fractional-Popula-
tion)

𝑝𝑚 ≔def 𝐾−1𝑛𝑚 with ∑
𝑀−1

𝑚=0
𝑝𝑚 = 1

Normalized probability of 𝒑
• with weight 𝑊𝐾(𝐾𝒑) = 𝑀𝐾𝑃𝐾(𝒑)
•

𝑃𝐾(𝒑) = 𝐾!
𝑀𝐾 ∏𝑀−1

𝑚=0 (𝐾𝑝𝑚)!
with ∑

𝒑
𝑃𝐾(𝒑) = 1

Peaking of the Distribution Probability The probability 𝑃𝐾(𝒑) of dis-
tributions 𝒑 becomes more peaked as 𝐾 ↑, at limit 𝐾 → ∞ a single
most-probable distribution (the average & the only relevant one).
• 𝝆 = {𝜌0, 𝜌1, …, 𝜌𝑀−1} with ∑𝑀−1

𝑚=0 𝜌𝑚 = 1

Ensemble Average (𝔼 at equilibrium)

For peaked distribution ⟨𝐴⟩ = ∑𝑀−1
𝑚=0 𝜌𝑚𝒜𝑚

⟨𝐴⟩⏟
macro. value

= lim
𝐾→∞

∑
𝒑⏟

over 
distributions

𝑃𝐾(𝒑) ∑
𝑀−1

𝑚=0
𝑝𝑚 𝒜𝑚⏟

micro. value
in state m

Calculation with 𝜉−1 = ℎ3𝑁𝑁! units: [𝜉] = 1
action3𝑁 = [𝜌(𝒙2𝑁)]

⟨𝒜⟩ = 𝜉𝑍−1 ∫ 𝑑𝒓𝑑𝒑𝒜𝑒−𝛽ℋ

𝑍 = 𝜉 ∫ 𝑑𝒓𝑑𝒑 ⋅ 𝑒−𝛽ℋ with 𝜉 = (ℎ3𝑁𝑁!)−1

Phase-Space Probability Density

𝜌(𝒙2𝑁) with ∫ 𝑑𝒙2𝑁𝜌(𝒙2𝑁) = 1

Ensemble Average

⟨𝐴⟩ = ∫ 𝑑𝒙𝟐𝑵𝝆(𝒙2𝑁)𝒜(𝒙2𝑁)

Entropy

𝑆 = −𝑘𝐵 ∫ 𝑑𝒙2𝑁𝜌(𝒙2𝑁) ln[𝜉−1𝜌(𝒙2𝑁)]

Boltzmann & Gibbs Entropy

Boltzmann postulate 𝑆 as logarithmic measure of 𝑊𝐾(𝒑)

Boltzmann Entropy

𝑆𝐾(𝒑) = 𝑘𝐵𝐾−1 ln 𝑊𝐾(𝐾𝒑)

Gibbs Entropy

𝑆(𝒑) = −𝑘𝐵 ∑
𝑀−1

𝑚=0
𝑝𝑚 ln(𝑝𝑚)

In the limit of an infinite ensemble

In the limit 𝐾 → ∞, the entropy of a thermodynamic system is uniquely
defined by the given macroscopic constraints 𝑆 ≔ 𝑆(𝑁, 𝑉 , 𝑇 ).

𝑆∞(𝒑) = lim
𝐾→∞

𝑆𝐾(𝒑) =Boltzmann lim
𝐾→∞

𝑘𝐵𝐾−1 ln 𝑊𝐾(𝐾𝒑)

= 𝑘𝐵 lim
𝐾→∞

𝐾−1 ln 𝑊𝐾(𝐾𝝆)

=Gibbs −𝑘𝐵 ∑
𝑀−1

𝑚=0
𝜌𝑚 ln(𝜌𝑚)

Statistical Mechanical Ensembles

hypothetical construct consisting of 𝐾 i.i.d. copies of the system. En-
semble itself represents 1 macrostate, with system copies in different
microstates. Time-independent (Liouville)
• ranked by most common left NPT > µVT =? NVT > NVE
• isochoric 𝑑𝑉 , adiabatic 𝑑𝑄, isothermal 𝑑𝑇 , isobaric 𝑑𝑃

Ensemble Experiment
microcanoni-
cal (NV𝐸tot)

isolated (in practice not achievable, in MD no per-
fect 𝐸tot conservation)
• plain MD or MC + “ergostat”

canonical
(NVT)

closed + thermostat + rigid container
• MD + thermostat or MC or SD

isothermal-
isobaric (NPT/
Gibbs)

closed + thermostat + barostat
• MD+thermostat+barostat
• MC+barostat
• SD+barostat

grand-canoni-
cal (𝜇𝑉 𝑇 )

open+thermostat+fixed volume
• MD+thermostat
• MC

others isoenthalpic-isobaric (NPH), grand-microcanonical, grand-
isoenthalpic-isobaric, generalized

Microcanonical Ensemble (NVE) (closed, 𝑑𝑉 , 𝑑𝑄 = 0)

Const 𝑁, 𝑉 , 𝐸tot (system constraints), 𝑁, 𝑉  define energy levels 𝑬 =
{𝐸0, …, 𝐸𝐽−1}, 𝐸0 = 0 and degeneracies 𝒈 = {𝑔0, …, 𝑔𝐽−1}. Value of 𝐸
some 𝐸𝑗, level denoted as 𝑗(𝐸)

Discrete 𝜌𝑚 = 1/𝑔𝑗(𝐸) Continuous (Classical)

𝜌𝑚 = 𝑔−1
𝑗(𝐸)𝛿𝑗𝑚,𝑗(𝐸) 𝜌𝑚 = Ω−1(𝐸)𝛿(𝐸 − 𝐸𝑚)

𝜌(𝒙2𝑁) = 𝜉Ω−1(𝐸)𝛿(𝐸 − ℋ(𝒙2𝑁))

𝑆 = 𝑘𝐵 ln 𝑔𝑗(𝐸) 𝑆 = 𝑘𝐵 ln Ω(𝐸)

Boltzmann Entropy derived from Gibbs Entropy Definition

𝑆𝐾(𝜌𝑚) =Δ 𝑘𝐵 ∑
𝑀−1

𝑚=0
(𝑔−1

𝑗(𝐸)𝛿𝑗𝑚,𝑗(𝐸)) ln(𝑔𝑗(𝐸)𝛿𝑗𝑚,𝑗(𝐸))

= 𝑘𝐵𝑔−1
𝑗(𝐸) ln(𝑔𝑗(𝐸))∑

𝑀−1

𝑚=0
(𝛿𝑗𝑚,𝑗(𝐸))

⏟⏟⏟⏟⏟⏟⏟
𝑔𝑗(𝐸)

Density of States (QM & Classical) units: [Ω] = 1
energy

Ω(𝐸) = ∑
𝑀−1

𝑚=0
𝛿(𝐸 − 𝐸𝑚) = ∑

𝐽−1

𝑗=0
𝑔𝑗𝛿(𝐸 − 𝐸𝑗)

Ω(𝐸) = 𝜉 ⋅ ∫ 𝑑𝒙2𝑁𝛿(𝐸 − ℋ(𝒙2𝑁))
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

area of  hypersurface 𝓗 = E
in the phase space

Canonical Ensemble (NVT) (closed, 𝑑𝑉 , 𝑑𝑇 = 0)

Const 𝑁, 𝑉  (system) 𝐸 (ensemble), 𝐸 = 𝐸(𝑁, 𝑉 ) limits

(BM) Distribution 2 ensemble constraints, ∑𝑚 𝑝𝑚 = 1
• Δ𝐸 ↑⇒ exponential population decrease
• populated energies 𝑝(𝐸) is a peaky region

𝜌𝑚 = 𝑍−1𝑒−𝛽𝐸𝑚 with 𝑍 = ∑
𝑀−1

𝑚=0
𝑒−𝛽𝐸𝑚

Lemma. it also holds that

∑
𝑀−1

𝑚=0
𝜌𝑚 = 1 and 𝐸 = ∑

𝑀−1

𝑚=0
𝜌𝑚𝐸𝑚

Discrete Continuous (Classical)

𝜌𝑚 = 𝑍−1𝑒−𝛽𝐸𝑚

with 𝑍 = ∑
𝑀−1

𝑚=0
𝑒−𝛽𝐸𝑚

𝜌(𝒙2𝑁) = 𝜉𝑍−1𝑒−𝛽ℋ(𝒙2𝑁)

with 𝑍 = 𝜉 ∫ 𝑑𝒙2𝑁𝑒−𝛽ℋ(𝒙2𝑁)

𝑆 = 𝑘𝐵 ln 𝑍 + 𝑘𝐵𝛽𝐸

⇒ 𝑆 = 𝑘𝐵 ln 𝑍 + 𝑈 − 𝑈𝑜
𝑇⏟⏟⏟⏟⏟⏟⏟⏟⏟

٭

𝑆 = −𝑘𝐵 ∫ 𝑑𝒙2𝑁 ln[𝜉−1𝜌(𝒙2𝑁)]

Helmholtz Free Energy 𝐹 = −𝑘𝐵𝑇 ln 𝑍 + 𝑈𝑜
• Reformulate (٭) to 𝑇𝑆 = …, plug in
• 𝐹 =Δ 𝑈 − 𝑇𝑆 ⇔

٭
𝐹 = 𝑈 − (𝑇𝑘𝐵 ln 𝑍 + (𝑈 − 𝑈𝑜))

Pressure 𝑃 = 𝑘𝐵𝑇(𝜕 ln 𝑍
𝜕𝑉 )

𝑁,𝑇
− (𝜕𝑈𝑜

𝜕𝑉 )
𝑁

• 𝑑𝐹 = −𝑃𝑑𝑉 − 𝑆𝑑𝑇 , plug in 𝐹  reformulate
• 𝑃 = −(𝜕𝐹

𝜕𝑉 )
𝑇

= −(𝜕(−𝑘𝐵𝑇 ln 𝑍)
𝜕𝑉 + 𝜕𝑈𝑜

𝜕𝑉 )
𝑇
∎

Internal Energy & two thermo laws (𝑈 = 𝐸 + 𝑈𝑜)

𝑈 = −(𝜕 ln 𝑍
𝜕𝛽

)
𝑁,𝑉

+ 𝑈𝑜

for a reversible process, 𝑑𝑈  in a closed system is reversible

𝑑𝑈 = {𝑑𝑈𝑜 + ∑𝑀−1
𝑚=0 𝜌𝑚𝑑𝐸𝑚 + ∑𝑀−1

𝑚=0 𝐸𝑚𝑑𝜌𝑚
𝛿𝑊rev + 𝛿𝑄rev = −𝑃𝑑𝑉 + 𝑇𝑑𝑆

Volume Work as Change of Levels not Populations

𝛿𝑊rev = −𝑃𝑑𝑉 = 𝑑𝑈𝑜 + ∑
𝑀−1

𝑚=0
𝜌𝑚𝑑𝐸𝑚

Heat Work as Change of Populations not Levels

𝛿𝑄rev = 𝑇𝑑𝑆 = ∑
𝑀−1

𝑚=0
𝐸𝑚𝑑𝜌𝑚

Ideal Monoatomic Gas 𝑍 = 𝑉 𝑁

ℎ3𝑁𝑁! ⋅ (2𝜋𝑚
𝛽 )

3𝑁
2

① Internal energy

𝑈 = −𝜕 ln−3𝑁
2

𝜕𝛽
= 3𝑁

2
𝛽−1 = 3𝑁

2
𝑘𝐵𝑇

② Pressure 𝑃 = 𝛽−1 𝜕 ln 𝑉 𝑁

𝜕𝑉 = 𝛽−1𝑁𝑉 −1 = 𝑁𝑘𝐵𝑇
𝑉

③ Helmholtz Free Energy



𝐹 = −𝛽−1 ln
(
(( 𝑉 𝑁

ℎ3𝑁𝑁!
⋅ (2𝜋𝑚

𝛽
)

3𝑁
2

)
))

=
Stirling

−𝛽−1 ln
(
((−𝑁 ln 𝑁 + 𝑁 + 𝑁 ln 𝑉 + 𝑁 ln (2𝜋𝑚

𝛽ℎ2 )
3
2

)
))

= −𝑁𝛽−1

(
((1 + ln 𝑉

𝑁
(2𝜋𝑚

𝛽ℎ2 )
3
2

)
))

④ Entropy

𝑆 = 𝑘𝐵
{{
{
{{3𝑁

2
+ 𝑁

(
((1 + ln 𝑉

𝑁
(2𝜋𝑚

𝛽ℎ2 )
2
3

)
))

}}
}
}}

= 𝑁𝑘𝐵
[
[[

5
2

+ ln 𝑉
𝑁

(2𝜋𝑚
𝛽ℎ2 )

3
2

]
]]

Isothermal-isobaric (NPT) (closed, 𝑑𝑃 , 𝑑𝑇 = 0)

Const 𝑁  (system) 𝑉 , 𝐸 (ensemble), 𝑉 -dependent states. With contin-
uous volume variable normalized ∫ 𝑑𝒱 ∑𝑚 𝜌𝑚(𝒱) = 1 and 𝜍 ≔ 𝛽𝑃  with
unit volume−1

𝜌𝑚(𝒱) = 𝑍−1
𝑁𝑃𝑇 ⋅ 𝜍 ⋅ 𝑒−𝛽𝑌𝑚(𝒱)

𝑍𝑁𝑃𝑇 = 𝜍 ∫ 𝑑𝒱 ∑
𝑚

𝑒−𝛽𝑌𝑚(𝒱)

NPT & NVT Partition Function

𝑍𝑁𝑃𝑇 = 𝜍 ⋅ ∫ 𝑑𝒱 ⋅ 𝑒−𝛽𝑃𝒱 ⋅ 𝑍NVT

𝑍𝑁𝑃𝑇 = 𝜍 ⋅ 𝜉 ∫ 𝑑𝒱∫ 𝑑𝒙2𝑁 ⋅ 𝑒−𝛽𝑌 (𝒙2𝑁,𝒱)

= 𝜍 ⋅ ∫ 𝑑𝒱 ⋅ 𝑒−𝛽𝑃𝒱(𝜉 ⋅ ∫ 𝑑𝒙2𝑁 ⋅ 𝑒−𝛽ℋ(𝒙2𝑁,𝒱))

= 𝜍 ⋅ ∫ 𝑑𝒱 ⋅ 𝑒−𝛽𝑃𝒱 ⋅ 𝑍NVT

Enthalpy 𝑌𝑚(𝒱) = 𝐸𝑚(𝒱) + 𝑃𝒱

NPT Ensemble Average

𝐴 = ⟨𝒜⟩ = ∫ 𝑑𝒱 ∑
𝑚

𝒜𝑚(𝒱) ⋅ 𝜌𝑚(𝒱)

Interpretation
1. Compressibility

(𝜕𝑉
𝜕𝑃

)
𝑁,𝑇

= −𝑉 𝜅𝑇 < 0

2. Molar Volume

(𝜕𝑁
𝜕𝜇

)
𝑉 ,𝑇

= 𝑁𝜅𝑇
𝜈

> 0

Ergodic Theorem (Trajectory ⇔ Ensemble Average)

𝑄 = ⟨𝑄⟩

All accessible states must be visited multiple times within the obser-
vation period. Instead of average over system copies, average over

trajectory of a single system. Holds for 𝐾 → ∞ and 𝑡 → ∞ (the latter
not in MD).

Equipartition Theorem

𝐸avg = 1
2𝑘𝑏𝑇  per DOF. Holds only at equilibrium & classical limit, quan-

tum effects (low 𝑇 ) reduce this capacity.

⟨𝒦⟩ = 1
2

⋅ 𝑁dof𝑘𝐵𝑇

Ideal Gas (No interactions ⇒ Energies additive)

Distinguishable (CM) (atoms in molecule/solid)

𝑍 = ∏
𝑁

𝑛
𝑍𝑛

Indistinguishable (QM) (liquid/gas, Fermion/Bosons) neglecting QM
symmetry issues (to account, Fermi-Dirac/Bose-Einstein statistics, at
limit Boltzmann)

𝑍 = 1
𝑁!

∏
𝑁

𝑛
𝑧𝑛

Over states it holds

𝑧dof = ∑
𝑀dof−1

𝑚=0
𝑒−𝛽𝐸dof

𝑚

over levels it holds

𝑧dof = ∑
𝐽dof−1

𝑗=0
𝑔dof

𝑗 𝑒−𝛽𝐸dof
𝑗

Maxwell-Boltzmann (MB)

Write down the equation given 𝑃𝑛for Boltzmann Given energy levels
𝐸𝑛 = 𝑛Δ𝐸 with 𝑛 = 0, 1, 2, 3

𝑃𝑛 = 𝑒− 𝐸𝑛
𝑘𝐵𝑇

∑𝑖∈{0,1,2,3} 𝑒− 𝐸𝑖
𝑘𝐵𝑇

Equalities for 𝑐, 𝜇 and 𝜎2

1 =! ∫
∞

−∞
𝑑𝑥𝑝(𝑥)

𝜇 = ⟨𝑥⟩ = ∫
∞

−∞
𝑑𝑥 ⋅ 𝑥𝑝(𝑥)

𝜎2 = ⟨(𝑥 − 𝑥)2⟩ = ∫
∞

−∞
𝑑𝑥(𝑥 − 𝜇)2𝑝(𝑥)

MB Distribution of Velocity (momenta), often for monoatomic gases,
generally applicable in all phases within classical limit. (speed of
sound, helium voice). Let 𝑝(𝑣)𝑑𝑣 be the probability that the velocity
(norm) of a gas particle is between 𝑣 and 𝑣 + 𝑑𝑣, such that ∫∞

0
𝑝(𝑣)𝑑𝑣 =

1.

𝑝(𝑣) = 4𝜋( 3𝑚
4𝜋𝐾

)
3
2
𝑣2 exp(−3𝑚𝑣2

4𝐾
)

Consider NVT at classical level and in Cartesian coordinate

1D Distribution for velocity component 𝛼 = 𝑥, 𝑦, 𝑧

𝜌(𝜈𝛼) = (𝛽𝑚
2𝜋

)
1
2

⋅ 𝑒
−𝛽𝑚𝜈2𝛼

2

average ⟨𝜈𝛼⟩ = ∫
∞

−∞
𝜈𝛼 ⋅ 𝜌(𝜈𝛼)𝑑𝜈𝛼 =

symmetric
0

MS ⟨𝜈2
𝛼⟩ = 1

𝛽𝑚

3D Vector Distribution 𝜌(𝝂) = (𝛽𝑚
2𝜋 )

3
2 ⋅ 𝑒

−𝛽𝑚𝝂2
2

Norm Distribution ∫∞
0

𝑑𝜈𝜌(𝜈) = 1

𝜌(𝝂) = 4𝜋(𝛽𝑚
2𝜋

)
3
2

⋅ 𝜈2 ⋅ 𝑒
−𝛽𝑚𝝂2

2

average ⟨𝜈⟩ = ( 8
𝜋𝛽𝑚

)
1
2

RMS ⟨𝜈2⟩1
2 = ( 3

𝛽𝑚
)

1
2

most probable 𝜈∗ = ( 2
𝛽𝑚

)
1
2

Factorization of Partition Function 𝑍

Canonical 𝑍 = 𝑍𝒦 ⋅ 𝑍𝒱, using ℋ(𝒙2𝑁) = 𝒦(𝒑𝑁) + 𝒱(𝒓𝑁)

𝑍NVT = 𝜉 ∫ 𝑑𝒙2𝑁𝑒−𝛽ℋ(𝒙2𝑁)

= (𝜉 ∫ 𝑑𝒑𝑁𝑒−𝛽𝒦(𝒑𝑁))
⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑍𝒦 momentum

(∫ 𝑑𝒓𝑁𝑒−𝛽𝒱(𝒓𝑁))
⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑍𝒱 configuration

Momentum integral depends not on intermolecular interactions.
Translational 𝐸kin only. For canonical ensemble

𝑍tra = 𝑍𝒦 = 𝜉(∫
∞

−∞
𝑑𝑝 ⋅ 𝑒−𝛽 𝑝2

2𝑚 )
3𝑁

=
𝜉= 1

ℎ3𝑁𝑁! 1
𝑁!

(2𝜋𝑚
𝛽ℎ2 )

3𝑁
2

Configuration integral For ideal gas factorizable into different modes.
For liquids and solids, modes not decouple-able from interactions, no
possible partition → MD necessary!

𝑍 = 𝑍tra ⋅ 𝑍rot ⋅

𝐸pot

⏞𝑍vib⏟⏟⏟⏟⏟⏟⏟
𝐸kin

⋅ 𝑍elec ⋅ 𝑍nuc⏟⏟⏟⏟⏟
often only 1 therm

accessible state

Rigid Linear rotor (approx valid 𝑇  sufficient high, else exact)

𝑍exact
rot = ∑

∞

𝑙=0
(2𝑙 + 1)𝑒−𝛽ℏ2

2𝐼 𝑙(𝑙+1) ≈
𝑥≔𝑙(𝑙+1)

∫
∞

𝑥=0
𝑒−𝛽ℏ2

2𝐼 𝑥𝑑𝑥 = 2𝐼
𝛽ℏ2

Harm Oscillator (CM approx not necessarily valid at room 𝑇 )

𝑍exact
vib = ∑

∞

𝑛=0
𝑒−𝛽ℏ𝜔𝑛 ٭= 1

1 − 𝑒−𝛽ℏ𝜔𝑛

Fluctuations of a quantity ⟨𝑄⟩ = ∑𝑖 𝑃𝑖𝑄𝑖

⟨𝑄⟩ ≔ ∫ 𝑑𝑄 ⋅ 𝑃(𝑄)𝑄 ⇔
ergodic

principle
⟨𝑄⟩ = 𝑄 = 1

𝑡
∫

𝑡
𝑑𝑡𝑄(𝑡)

Standard Deviation Over Ensemble

𝜎𝑄 = (∫ 𝑑𝑄 ⋅ 𝑃(𝑄)(𝑄 − ⟨𝑄⟩)2)
1
2

⇔
ergodic

principle
𝜎𝑄 = (1

𝑡
⋅ ∫

𝑡

0
𝑑𝑡 ⋅ (𝑄(𝑡) − 𝑄)2)

1
2

if 𝑡 → ∞

Single-Sweep

𝜎2
𝑄 = ⟨𝑄2 − 2𝑄⟨𝑄⟩ + ⟨𝑄⟩2⟩ = ⟨𝑄2⟩ − ⟨𝑄⟩2

Gaussian ⟨𝑄⟩ = 𝜇 and ⟨(𝑄 − 𝜇)2⟩ = ⟨𝑄2⟩ − 𝜇2 = 𝜎2

Canonical/Isothermal-Isobaric/Grand-Canonical the relative fluc-
tuations of all dependent extensive quantities scale with the no. of
particles 𝑁  as ∝ 𝑁−1

2 . Fluc. of sum of normal dist scales as 𝜎(∑𝑁
𝑖=1 𝑅𝑖)

∑𝑁
𝑖=1 𝑅𝑖

∝

𝑁−1
2

𝜎2
𝐸 = 𝑘𝐵𝑇 2𝐶𝑉 = 𝛽−1𝐶𝑉 𝑇 ⇒

𝐶𝑉 ∝𝑁 𝜎𝐸
⟨𝐸⟩

∝ 𝑁−1
2

𝜎2
𝑉 = 𝑘𝐵𝑇𝑉 𝜅𝑇 = 𝛽−1𝑉 𝜅𝑇 ⇒

𝑉 ∝𝑁 𝜎𝑉
⟨𝑉 ⟩

∝ 𝑁−1
2

𝜎2
𝑁 = 𝑘𝐵𝑇𝑁𝜈−1𝜅𝑇 = 𝛽−1𝜌𝜅𝑇 𝑁 ⇒ 𝜎𝑁

⟨𝑁⟩
∝ 𝑁−1

2

In the thermodynamic limit 𝑁 → ∞, all observables become fluctu-
ation-free in terms of relative fluctuations and a one-component one-
phase system can be equivalently specified by any combination of
three variables (water 1 kg, 1 L, 300 K ≡ water 1 kg, 1 bar, 300 K)

Derivation

𝜕𝑍
𝜕𝛽

= ∑
𝑚

−𝐸𝑚𝑒−𝛽𝐸𝑚 = −𝑍⟨𝐸⟩

𝜕2𝑍
𝜕𝛽2 = ∑

𝑚
𝐸2

𝑚𝑒−𝛽𝐸𝑚 = 𝑍⟨𝐸2⟩

𝜎2
𝐸 = ⟨𝐸2⟩ − ⟨𝐸⟩2 = 1

𝑍
𝜕2𝑍
𝜕𝛽2 − ( 1

𝑍2 (𝜕𝑍
𝜕𝛽

)
2

) = − 𝜕
𝜕𝛽

⟨𝐸⟩

𝐶𝑉 =Δ (𝜕𝑈
𝜕𝑇

)
𝑁,𝑇

= (𝜕𝑈
𝜕𝛽

)
𝑁,𝑇

𝑑𝛽
𝑑𝑇

= − 1
𝑘𝐵𝑇 2

𝜕
𝜕𝛽

⟨𝐸⟩

Covariance

𝐶𝑎𝑏 = ⟨(𝑎 − 𝑎) ⋅ (𝑏 − 𝑏)⟩ = ⟨𝑎𝑏⟩ − 𝑎𝑏

Cross-correlation normalized covariance

𝑐𝑎𝑏 = 𝐶𝑎𝑏
𝜎𝑎𝜎𝑏

→
{{
{
{{+1 perfect correlation

0 no correlation
−1 perfect anticorrelation

Autocorrelation Function 𝐶𝑄(𝜏) = ⟨𝑄(𝑡)𝑄(𝜏 + 𝑡)⟩

Quantum Statistics (i.i.d. & indistinguishable)

Fermi-Dirac/Bose-E/M-Boltzmann (low 𝜌 or high 𝑇  limit) This plot is
not of distribution!



𝑊FD(𝒏) = ∏
𝑗

𝑁sel = ∏
𝑗

𝑔𝑗!
𝑛𝑗!(𝑔𝑗 − 𝑛𝑗)!

𝑊BE(𝒏) = ∏
𝑗

𝑁dis = ∏
𝑗

(𝑛𝑗 + 𝑔𝑗 − 1)!
𝑛𝑗!(𝑔𝑗 − 1)!

𝑊MB(𝒏) = ∏
𝑗

𝑔𝑛𝑘

𝑛𝑗!
, where

𝑔𝑗!
(𝑔𝑗 − 𝑛𝑗)!

≈
(𝑔𝑗 + 𝑛𝑗 − 1)!

(𝑔𝑗 − 1)!
≈ 𝑔𝑛𝑘

Distribution Functions ① Use Stirling and differentiate

𝜕
𝜕𝑛𝑖

ln 𝑊FD(𝒏) = ln 𝑔𝑖 − 𝑛𝑖
𝑛𝑖

= ln(𝑓−1
𝐹𝐷,𝑖 − 1)

𝜕
𝜕𝑛𝑖

ln 𝑊BE(𝒏) = ln 𝑛𝑖 + 𝑔𝑖 − 1
𝑛𝑖

= ln(𝑓−1
𝐵𝐸,𝑖 + 1)

𝜕
𝜕𝑛𝑖

ln 𝑊MB(𝒏) = ln 𝑔𝑖
𝑛𝑖

= ln 𝑓−1
𝑀𝐵,𝑖

where 𝑓𝐹𝐷,𝑖 =Δ 𝑛𝑖
𝑔𝑖

, 𝑓𝐵𝐸,𝑖 =Δ 𝑛𝑖
𝑔𝑖−1  and 𝑓𝑀𝐵,𝑖 =Δ 𝑛𝑖

𝑔𝑖

② Max. 𝑊 , Lagrange multipliers (𝛽 = 1
𝑘𝐵𝑇 , 𝛼 = −𝜇

𝑘𝐵𝑇 = −𝛽𝜇)

𝜕
𝜕𝑛𝑖

(ln 𝑊(𝒏) − 𝛼 ∑
𝑗

𝑛𝑗 − 𝛽 ∑
𝑗

𝑛𝑗𝜀𝑗) = 0, ∀𝑖

⇒

{{
{{
{{
{𝑓FD,i = 1

𝑒𝛼+𝛽𝜀𝑖+1 = 1
𝑒𝛽(𝜀𝑖−𝜇)+1

𝑓BE,i = 1
𝑒𝛼+𝛽𝜀𝑖−1 = 1

𝑒𝛽(𝜀𝑖−𝜇)−1 singular at 𝜀𝑖 = 𝜇
𝑓MB,i = 𝑒−(𝛼+𝛽𝜀𝑖) = 𝑍−1 ⋅ 𝑒−𝛽𝜀𝑖 with 𝑍 = 𝑒−𝛽𝜇

Pauli Exclusion Principle There cannot be more than one fermion in a
given quantum state, unconstrained for bosons. At limit 𝑇 → 0
• FD: all levels 𝜀0 to 𝜀𝐹 ≔ lim𝑇→0 𝜇 occupied with 1 Fermion each
• BE: all particles at lowest level 𝜀0 = 𝜇

MD

Biomolecules Amino acids, Carbohydrates (Monosaccharides, Disac-
charides), Lipids (amphiphilic), Nucleic acids, DNA/RNA Environment
ions, water (high 𝐶𝑣, dipole moment, 𝐻-bonding capacity) Protein
have secondary structure (𝛼-helix, 𝜋-helix, 𝛽-sheets) representation
① Van der Waals spheres ② Caroon representation for only backbones
(with torsional angles) MD Num integration over the classical EOM
(Newton), Cartesian coord. Simulating biological system ↔ solving the
many-particle problem

Degrees of Freedom - Coarse-grain (CG) model

QM description (with electrons), valid when small systems (100
atoms). Negligible QM effects in large systems.

CG models reduce DOFs & interactions while ① align with research
needs ② eliminate mostly decoupled DOFs. ③ remained DOF easily rep-
resentable. 🖓Less transferability, altered physics, unphysical entropy/
energy balance. 🖒speedup

Atoms: United Atoms, ①remove non-essential DOFs (e.g. H-atoms in
lipids) ②replace functional groups (CH, CH2) with larger atoms 🖓 Not
for strong hydrogen-bonding atoms (O, N, S, P).

Supra-atomic:
• Iterative boltzmann inversion reproduces structure, not forces
• Force matching reproduces forces, not structure. Compute 𝐹avg on

mapped atoms for each CG bead→least-square match force distrib-
utions with effective pair potentials

• Fitting to Thermodynamic Properties (MARTINI): Start with atom-
istic guesses, then systematically scan parameters. 🖓 Can lead to
loss of essential DOFs and may require elastic networks for main-
taining protein 2nd, tertiary structures.

Interactions in Classical Atomistic Force Fields (FF)

Classical FF 𝒱phys(𝒓𝑁),  with 𝒓𝑁 = (𝒓1, 𝒓2, …, 𝒓𝑁)
• often underdetermined, too many parameter/experimental data

lacks 𝒱(𝒓𝑁) = 𝒱phys(𝒓𝑁) + 𝒱special(𝒓𝑁). Special terms from NMR
data, biased sampling. Physical terms (if two atoms → ignore the ∑):

𝒱bond(𝒓𝑁) = ∑bonds
𝑖

1
2𝐾𝑏

𝑖 [𝑏𝑖(𝒓𝑁) − 𝑏0
𝑖 ]

2

𝒱angle(𝜃) = ∑angles
𝑖

1
2𝐾𝜃

𝑖 [𝜃𝑖 − 𝜃0
𝑖 ]

2

𝒱torsion(𝒓𝑁) = ∑torsions
𝑖 𝐾𝜑

𝑖 [1 + cos(𝑚𝑖𝜑𝑖(𝒓𝑁) − 𝛿𝑖)]
2

𝒱vdW(𝒓𝑁) = ∑pairs i<j 4𝜀𝑖𝑗[(𝜎𝑖𝑗
𝑟𝑖𝑗

)
12

− (𝜎𝑖𝑗
𝑟𝑖𝑗

)
6
]

𝒱ele(𝒓𝑁) = ∑pairs i<j
1

4𝜋𝜀0𝜀𝑟

𝑞𝑖𝑞𝑗
𝑟𝑖𝑗

and N-body polar. energy 𝒱pol, external fields energy 𝒱ext

Non-bonded elec, vdW as interactions of atoms independent of net
charge. (Repulsion (short-range forces) of nuclei (Coulomb, Pauli’s
principle), Attraction (long-range forces) of induced dipoles from fluc-
tuations in electron clouds (London forces), LJ used to approximate
vdW)

*vdW* strong short-range repulsion upon atom overlap (Pauli exclu-
sion) & longer-range attraction by electron correlation (instantaneous
dipole-dipole interactions, termed London dispersion)

𝑉SW(𝑟;𝑟0) = 𝐶12(𝑟0 − 𝑟)−12 − 𝐶6(𝑟0 − 𝑟)−6

Bonded bonds, angles torsions, improper dihedrals

Morse function for covalent bond stretching 🖒bond-break (dissocia-
tion) possible 🖓comp. expensive 𝑏𝑖𝑗 : length of the bond between
atoms 𝑖 and 𝑗

𝒱Morse(𝒓(𝑡); 𝐷𝑛; 𝐾𝑏
𝑛; 𝑏0

𝑛) = ∑
𝑛

𝐷𝑛{1 − 𝑒(
((

[
[[−(𝐾𝑏𝑛

2 )
1
2
(𝑏𝑛(𝑡)−𝑏0

𝑛]
)
))

}}
}
}}

2

Harmonic approximation 🖒simple, cheap 🖓no dissociation

𝒱harm(𝒓(𝑡); 𝐾𝑏
𝑛; 𝑏0

𝑛) = ∑
𝑛

1
2
𝐾𝑏

𝑛(𝑏𝑛(𝑡) − 𝑏0
𝑛)

2

Effective FF (Parameterized) shall be representative with correct
physics, simple with few terms, efficient with no complex derivatives
and exponential terms and parameters transferable for a range of
molecules

Configuration Generation

High-dimensional space; global minimum impractical. Goal Generate
low-energy, Boltzmann-weighted IC/configurations ①Search: Find and
minimize low-energy regions. ②Sample: Explore configurations (me-
tropolis MC, modified MD with biasing). ③Simulate: Use dynamics (MD,
SD, BD).

Key properties of the required method

Search Sample Simulate

B ❌ ✅ ✅

P ❌ ❌ ✅

• Boltzmann-weighted ensemble: thermodynamic properties can be
calculated

• Physically-based sequence of configurations through classical
EOM: dynamic properties can be calculated

Init Coordinates Specified 𝐸pot.Choose carefully (e.g., X-ray/NMR)
unless longer equilibration than conformational relaxation time. Init
Velocities Specified 𝐸kin, generally unimportant due to fast relaxation
( ps), useful for initial 𝐸. Random from 𝑓MB at some 𝑇 . Bond-Length
Constraints freeze bond vibrations, valid if bonds weakly coupled, in
ground state.🖒freezed bonds allow Δ𝑡 → 2 fs (before 0.5 − 1 fs for fast
vibration)

Integrators good accuracy, conservation of properties compatible with
thermo/barostating (symplectic, phase-space-volume preserving), re-
versible in time.

Timestep Δ𝑡 ≈ 𝜏
10 ≈ period of fastest motion

10 . Tradeoff Too short poor sam-
pling, too long poor energy conservation & overflow

Not time reversible Euler, error 𝑂(Δ2). RK, error 𝑂(Δ4).

Time-reversible leap-frog, symplectic, error 𝑂(Δ3) in both coordi-
nates and velocities. Interleaving cancels out leading error term 𝑂(Δ2)

𝒗(𝑡 + 1
2
Δ𝑡) = 𝒗(𝑡 − 1

2
Δ𝑡) + 𝒂(𝑡)Δ𝑡

𝒓(𝑡 + Δ𝑡) = 𝒓(𝑡) + 𝒗(𝑡 + 1
2
Δ𝑡)Δ𝑡

SHAKE in Cartesian 🖒easy geometric constraints, existing iterative
methods 🖓large movement within one timestep has no convergence
guarantee ⇒ indicates bad simulation setup (skip energy minimiza-
tion), timestep cannot be too long, lightest atom moves first (Newton’s
3rd) SHAKE how iterative for multiple bonds iterate with relative tol
10−4, for a single bond ①free-fight step (unconstrained) ②coordinate
resetting(SHAKE)

Spatial BC

Finite-size (FS) due to miscroscopic nature, lack of solute-solvent
interactions, cannot model intra-solute vdW/electrostatics. Surface
effect (SE) system has a large surface-to-volume ratio, increased sur-
face tension proportionally.

FS SE
Vacuum ☠ ☠ 🖓compactness, spherical shape,

strong electrostatics
Implicit
solvent

- Large 🖒cheap 🖓exact location of solute-
solvent boundary, parameter-sensi-

tive (charges, radii)
Finite

system
(droplet/
solvent
layer)

Large ☠ 🖓𝑃  too high, solvent evaporation, sur-
face-layer artifacts, strong electrosta-

tics

Periodic
(most-
used)

Large ♡ - artificial anisotropy/periodicity, high
effective concentration, expensive, FS

still present!

Finite-system BC needs confinement potential (LJ wall to confine
sample, prevent evaporation and mimic dispersion), orientation cor-
rection potential (prevents solvent preferential orientation & inhomo-
geneous distribution at surface 🖓poorly transferable)

Periodic BC explicit-solvent, mimics infinite lattice of periodic copies
of the reference box. Particles exit box through one face translated and
reenter through opposite. Infinite surface → no SE. Long-range inter-
action evaluated using lattice-sum methods (Fourier), or Minimum-
image pair, atom with closest periodic replica of another one with
cut-off distance. Short-range like covalent easy to compute, act only
between minimum images.

Box shape rectangular prism used for long (elongated), if rotates need
roto-translational constraint since molecule otherwise interacts with
its replica out-of-bound. Hexagon used for DNA, cube isotropic thus no
roto-fix needed but requires much solvent, octahedron for spherical
molecules, almost isotropic, less solvent. Triclinic for crystal, reshape-
able

Minimum solute-to-wall distance 𝑅
2  no solute atom interacts with

solute atom in periodic copy, 𝑅 no solvent molecule interacts with
solute atom in two solute periodic copies.

Thermodynamic BC

Plain MD microcanonical, Newtonian EOM conserves 𝐸tot and 𝐿tot
in vacuum, if periodic rotation in each cell coupled with friction, no
conservation of 𝐿tot. Quantities 𝑇 , 𝑃  dependent, calculated as 𝑇 =
⟨𝒯⟩, 𝑃 = ⟨𝒫⟩, have non-zero fluctuations for finite-systems.

Grand-canonical simulations, no. particles vary (uncommon), 𝜇 held
constant on average 🖒 🖓𝜇 is not instantaneous observable, discrete
variation → jumps in dynamics, equilibration needed after each jump

Thermo/Barostating Overview ①Constraining Fixes values exactly 🖒
Hamiltonian form, configuration distribution correct 🖓unphysical, no
fluctuations ②Weak-coupling (Berendsen) 🖒1-st order exponential
relaxation (physical)🖓depends on thermostat coupling time (friction
coeff 𝜁𝑇 = 1

2𝜏𝑇

𝒦−𝐾
𝒦 , unit: time−1), only approx canonical ③Extended



system (Nosé-Hoover) ̇𝜁𝑇 = 1
𝜏2

𝑇
(𝒦

𝐾 − 1) own EOM, 𝒦 > 𝐾, friction↑,

brakes particles ∼ Δ𝒦rel 🖒2nd-order relaxation, canonical🖓oscil-
latory(unphysical) ④Stochastic 🖒1-st order exponential relaxation,
canonical, thermalization efficient, few artifacts 🖓non-deterministic,
local thermostating (unphysical dynamics)

Thermostat To ensure 𝐸kin = 𝒦(𝑡 + Δ
2 ) = 𝐾, we scale the velocity 𝜆 =

(𝒦(𝑡−Δ
2 )

𝒦(𝑡+Δ
2 )

)
1
2
, leapfrog 𝒗(𝑡 + Δ

2 ) = 𝒗(𝑡 − Δ
2 ) + 𝑴−1𝑭(𝑡)Δ

④Collision within 𝜏𝑇  period, pick & assign 𝑣 ∼ 𝑓MB(𝑇ref) of an atom
randomly ⇒ ⟨𝑇⟩ = 𝑇ref

④Langevin EOM 𝑚𝑖 ̈𝒓𝑖 = 𝑭𝑖(𝒓(𝑡)) + 𝑹𝑖(𝑡) − 𝑚𝑖𝛾𝑖 ̇𝒓𝑖(𝑡) results in ⟨𝑇 ⟩ =
⟨𝑹2

𝑖 ⟩
6𝑚𝑖𝛾𝑖𝑘𝐵

= 𝑇ref

Barostat 𝒫 = 𝑃instan > 𝑃target ⇒ box 𝑉 ↑, adjust coord

Instan temperature (equipart, at equilibrium ⟨𝒯⟩ = 𝑇 )

𝒯 = 2
𝒩𝐷𝑘𝐵

⋅ 𝒦

⟨𝒦𝛼⟩ = ⟨1
2
𝑚𝛼𝜈2

𝛼⟩ = 𝑘𝐵𝑇
2

⇒
set of dofs

⟨𝒦⟩ =

3𝑁
⏞𝒩𝐷 𝑘𝐵𝑇

2

Instan pressure (virial)

𝒫 = 2(𝒦 − 𝒲)
3𝒱

= 𝑁𝑘𝐵𝒯
𝒱

− 2𝒲
3𝒱

𝑃 = ⟨2(𝒦 − 𝒲)
3𝒱

⟩ =

ideal gas
kinetic energy

⏞𝑁𝑘𝐵𝒯
𝒱

−

intermolecular
forces

⏞
⟨2𝒲

3𝒱
⟩

instan virial (isotropic) interm forces, correction term

𝒲 = −1
2

∑
𝑁

𝑖=1
𝒓𝑖 ⋅ 𝑭𝑖 > 0 ⇒ 𝑃 ↓ (attractive, pull inwards)

long 𝑡sim for good averaging, 𝑃  highly fluctuating (1 bar fluc in order ∼
100 bar)

Thermostat Barostat

𝒩̇ = 0
̇𝒓 = ∇𝒑𝒦

̇𝒑 = −∇𝒓𝒰 − 𝜁𝑇 𝒑

𝒱̇ = 0

𝒩̇ = 0
̇𝒓 = ∇𝒑𝒦 + 𝜒𝒓

̇𝒑 = −∇𝒓𝒰 − 𝜒𝒑

𝒱̇ = 3𝒱𝜒

Equipartition Violation (heterogeneous 𝑇 )
1. Hot/Cold-solvent (hetero. spatial regions) solvent subjected to

more heating than solute and 𝐸kin exchanged slowly, correct 𝑇  but
solute simulated to be colder than solvent → couple solute and
solvent dof to separate thermostats

2. Vibrationally-cold gas (hetero. dof) translation, rotation, vibration
modes coupled to the same thermostat should have diff. temp in
an ideal gas → couple diff modes to separate thermostats or use
stochastic approach

Uncoupled DOF Issues: Exclude linear/angular momentum from tem-
perature/pressure calculations to avoid errors (e.g., flying ice-cube
effect). Linear Momentum has no effect on system property (Move a
glass of water⇏ 𝑇 ↑), Angular Momentum (centrifugal forces).

Calculation of Properties

MC Sampling

🖒 simple, cheap, no derivatives of 𝒱 for force needed, applicable
to discontinuous 𝒱,efficient unphysical (but reversible) moves can
be designed for improved sampling 🖓non-deterministic, no dynamic
information, hard to design params (acceptance ratio etc.)

Stochastic Dynamics mimics following effects without explicit solvent
molecules, samples NVT.

① Mean Solvent Effect thermodynamics, dispersive attraction re-
duced in non-polar solvent, enhanced in polar solvents (hydrophobic)

② Stochastic Collisions dynamics, random but constrained forces on
solute atoms from solvent.

③ Frictional Drag dynamics, solvent-induced friction reduces solute
atom velocities.

Langevin 𝑚𝑖 ̈𝒓𝑖 = 𝑭 ∼
𝑖⏟

mean
force

− 𝑚𝑖𝛾𝑖 ̇𝒓𝑖⏟
frictional
force

+ 𝜎𝑖𝜼𝑖⏟
stochstic
force

• 𝜼𝑖 = 𝜼𝑖(𝑡) ∼ 𝒩 white-noise in unit of time−1
2 , stochastic force ampli-

tude 𝜎𝑖 (unit: force × time1
2 ), 𝛾 (unit time−1)

𝑚𝑑𝑣
𝑑𝑡

= 𝐹 − 𝑚𝛾𝑣 + 𝜎𝜂

𝑣(𝑡) = 𝑒−𝛾𝑡[𝑣(0) + 𝑚−1 ∫
𝑡

0
𝑑𝑡′ ⋅ 𝑒𝛾𝑡′(𝐹(𝑡′) + 𝜎𝜂(𝑡′))]

• Zero-friction limit (𝛾 = 0, 𝜎 = 0) ↔ Newton equation of MD
• High-friction limit ↔ Brownian Dynamics

Brownian Dynamics (BD) valid microscopically with low Re viscosity
dominates turbulent flow, derivable from Langevin

𝑚𝑖 ̈𝒓𝑖 = 𝑭 ∼
𝑖 − 𝑚𝑖𝛾𝑖 ̇𝒓𝑖 + 𝜎𝑖𝜼𝑖

⇔ 𝑚𝑖𝛾𝑖 ̇𝒓𝑖 = 𝑭 ∼
𝑖 + 𝜎𝑖𝜼𝑖

we neglect inertial term by setting the RHS to zero at the limit where
|𝑚𝑖 ̈𝒓𝑖| ≪ |𝑚𝑖𝛾𝑖 ̇𝒓𝑖|

Fokker-Plank (FP) with SDE ̇𝑥(𝑡) = 𝐴(𝑥, 𝑡) + 𝐵(𝑥, 𝑡)𝜂(𝑡)

̇𝑝(𝑥, 𝑡) = (− 𝜕
𝜕𝑥

𝐴(𝑥, 𝑡) × +1
2

𝜕2

𝜕𝑥2 𝐵2(𝑥, 𝑡) ×)𝑝(𝑥, 𝑡)

FP Equation for BD with SDE 𝑚𝛾 ̇𝑥 = 𝐹 + 𝜎𝜂

̇𝑝(𝑥, 𝑡) =

(
((
((
((
(

− 1
𝑚𝛾

𝜕
𝜕𝑥

𝐹(𝑥, 𝑡)⏟
drift 
term

× + 𝐷 𝜕2

𝜕𝑥2⏟
diffusion

term

×

)
))
))
))
)

𝑝(𝑥, 𝑡)

𝛾, 𝜎 and 𝑇  Connection 𝜎2 = 2𝛽−1𝑚𝛾, 𝐷 ≔ 1
2( 𝜎

𝑚𝛾)
2

Calculation of Properties (4-step process)

①Preprocess raw trajectories (periodic gather macromolecule locates
at box edges. Gather by pick atom within reference box and follow
covalent bonds 🖓with multiple solutes & roto-translational fitting 🖓
no strict decoupling, 𝒙ref-dependent)

②Time series analysis Statistical Moments (1st-4th) with decreasing
accuracy 𝜇, 𝜎2, skewness, kurtosis

③Calculate properties

Fick’s Law 𝒋(𝒓, 𝑡) = −𝐷 ⋅ ∇𝑐(𝒓, 𝑡)

Diffusion Equation 𝜕
𝜕𝑡𝑐(𝒓, 𝑡) = 𝐷∇2𝑐(𝒓, 𝑡)

• 𝑐 concentration of solute, 𝐷 diffusion constant

④Interpret results

Equilibration: Discard initial simulation period to remove non-repre-
sentative conditions, monitored by stabilization of observables. 🖓

No guarantee unless good initial configurations Best practice: use
multiple simulations (too costly), more 𝑡sim, sampling enhancement
techniques

Estimation of Statistical Errors Error on 𝜇 of 𝑁  normal distribution,
confidence factor 𝑐 (𝑐 = 1 → 68%, 2 → 95%, 3 → 99.7%) 𝜀 = 𝑐 𝜎

𝑁
1
2

 Effec-
tive no. samples 𝜀 = 𝑐 𝜎𝑄

𝑁
1
2
eff

Parameter Determination

Theoretical QM calculations (reference bond length 𝑏0, 𝑘𝑏 in 𝒱bond)

Experimental crystallographic structure determination (reference
bond length 𝑏0), infrared/Raman spectroscopy measurements (𝑘𝑏 in
𝒱bond)

Units

• 𝑘𝐵 = 𝑅
𝑁𝐴

= 1.381 × 10−23𝐽 ⋅ 𝐾−1

• 𝛽 = 1
𝑘𝐵𝑇 , 𝑛 = 𝑁

𝑁𝐴
, 𝑁𝐴 ≈ 6.02214076 × 1023mol−1

• ℎ = 6.6 ⋅ 10−34𝐽 ⋅ 𝑠 or ℏ = ℎ
2𝜋

𝐸𝑛 = ℏ2𝜋2

2𝑚𝑎2 𝑛2, for 𝑛 = 1, 2, …

Quantity Units
acceleration 𝑎 m/𝑠2

pressure 𝑃 Pa = N/𝑚2 = J/𝑚3atm =1.013 bar
Moment/work/energy J = Ws = Nm

Power W = Nm/s
Gas constant 𝑅 kJ/(mol·K)

Potential energy 𝒱 kJ/mol

• [𝑘𝐽 · mol−1 ⋅ 𝑚−3][𝑚3] = [mol][kJ ⋅ mol−1𝐾−1][𝐾] (𝑃𝑉 = 𝑛𝑅𝑇 )
• Planck constant: [ℎ] = action
• units: [𝑆] = energy

temperature

diffusion constant with units length2

time

Maths Tools

∑
∞

𝑛=0
𝑥𝑛 = 1

1 − 𝑥
, for |𝑥| < 1

Gaussian over ℝ+, with 𝑐𝑛 ≔ {
𝜋
2 if n even
1 if n odd

𝐼𝑛(𝑎) = ∫
∞

0
𝑥𝑛𝑒−𝑎𝑥2𝑑𝑥, 𝑎 > 0 = √𝑐𝑛 ⋅ (𝑛 − 1)!!(2𝑎)−𝑛+1

2

𝑛 = 0 𝑛 = 2 𝑛 = 4

1
2
(𝜋

𝑎
)

1
2 1

4
( 𝜋

𝑎3 )
1
2 3

8
( 𝜋

𝑎5 )
1
2

𝑛 = 1 𝑛 = 3 𝑛 = 5
1
2𝑎

1
2𝑎2

1
𝑎3

over ℝ, ∫∞
−∞

𝑥𝑛𝑒−𝑎𝑥2𝑑𝑥 = {2𝐼𝑛(𝑎) if n even
0 if n odd

Normalized Gaussian 2𝐼𝑛=0(𝑎) = 1√
2𝜋𝜎𝑒

−(𝑥−𝜇)2

(2𝜎2)

Important Numbers
• ( 8

𝜋)
1
2 ≈ 1.60

•
√

2 ≈ 1.41, ( 1√
2) ≈ 0.70710

•
√

3 ≈ 1.73, ( 1√
3) ≈ 0.577

•
√

5 ≈ 2.236, ( 1√
5) ≈ 0.4472

Fermi function 𝑓 = 1
𝑒𝑎𝑥+1


