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Exam cheatsheet for the FS24 exam at ETH Ziirich by Wu, You di %y,

Classical & Quantum Mechanics Polar coordinates ®%(%) =% od(%)=9%

Connection to Cartesian

ac(qM’ku)
0q,,

Newtonian (Only valid in Cartesian)

Jwith m=1,2, ...,

M

Of a N-particle system

g
T L=2m; or?

i

H(rN,pN, 1)
Laplacian A,
Constraints (implicit force law on trajectory)

Active force with explicitly known force law, free. Reactive force

/dr\p;fi% = (/ dr\p;fi\pl)

4] (4) :/drN\I/*(rN,t)/f(t)‘Il(rN,t)

TDSE associated with CM through correspondence principle

H () (rN, 1) = mia\p(;:v’t)

N .
LV, i) = 3 Ty . . ; VN
System of N particles, Ny, = 3N, t-dependent. For each particle p, = ( ) Z 2 ") e.nforces the Fonstralnt. Holonlolmlc con.stramt C(q.M, t) :MO only coor- T1sg separable wave function W(rN, t) = U(rN)T(t) with T(t) := et
myi, where v () = {ry, ..., rx} dinates and time, not on velocities Static holonomic C(¢") = 0 pulsation by rotation in C-plane. dT(n = Ep() = —sz( )
iTi m7; = F,(r™) A h lized di
Newton’s 2nd law m;i; = p, = F;, where i =1,2,...,. N MV = pN = — pproach @ Generalized Coordinates
M ; S

FN with M € R3N3N diagonal
® Use Lagrangian with Cartesian coordinate and with EOM

Newton’s 3rd Law F;; = —F,; with F;; exerted by i

Replacement for the EOM of the constrained M-th coordinate, with K =
M — 1 free coordinates.

FU,(rV) = BV, (rV) with [drV [0(rV)2 £ 1

N N N2 _ Derivation # ¥ (rV = ihW(rN) LY — (V) ET (¢
Deterministic Nature Given the EOM and a force expression — deter- & (0£(r™.7") ) _ d [ 8 Sy ) ) = a =Q Derivation W (rN)T(t) = ik ¥ (rN) 5 = ih¥ (rV) 2T (t)
ministic. At final state at ¢ = ¢, 7™ (t5,) and p™ (¢, ) are predictable. dt o de\ o \5 2 =0 TISE solution for a given V(r . Defines a real othonormal basis set.
Conservative Fleld (CF) Force is field if only m-dependent, Curl-free ® M V( N) = Fy(rN) We formulate Lagrangian for the K free coordinates. = ch\p N) - emient

(Stokes theorem -2 x F;(r
ative field must fulfill $dr

) = 0, Vi) implies conservative. Conserv-

CFN(eN) = ¥ $dr; - Fy(rV) =0 Hamiltonian (Valid in any generalized coordinates)

£(g",¢";Q) = X(¢",4";Q) = V(¢";Q)

k

« value pairs {E;,, ¥, } (EV, associated eigenfunction)

- complex coefficients ¢, w;, = 2=

Formulate K Lagrangian EOM for the free coordinates: b

d(0£(d".¢%Q)\ _ 9£(d". 4" Q)
dt 0, 0q,,

Potential energy of CF “-” force drives towards lower E,

ot time-depen-
dency to CF can be brought through E,,, =

Configuration/conformational space «» coordinates of a system.
Trajectory ¢ is the time-dependent evolution of a system in a
configuration space, no trajectories can cross = Liouville’s theorem
(The volume of any closed surface in phase space remains constant
_ ZN mTr’ _ Z{V % _ E{V 2::: as surface moves through phase space) Phase space «» coordinates &

' v v momentaz?M = {¢M, pM},in Cartesian 2N = {r", p"'} Orbit 2> (t)

time-dependent evolution of a system in phase space €5QM«CM with

QMChem atom/molec as many-particle system (nuclei+e™)
,with m=0,1,..., K

Difficulties High cost, limited configurations. Isolated molecules in
vacuum only or simple solvation. Approximations No ¢-dependence,
QM. Born-Oppenheimer (motionless nuclei). Neglect electron correla-
tion (partially corrected). Basis set projection to enable for numerical
linear algebra sol.

1]
F(rV) = *WV(TN)
‘ @ Lagrange Multipliers added constraint C(r™) =0 explicitly to
Cartesian Lagrangian

Kinetic Energy X (V)
Total Energy of CE V(rV) + X (#+V) = E,,, = const

constraint Lagrangian

Time-dependent V(r¥,t) + X (#V) = E(t) Hamiltonian operator

LN, 7N \) = L(rN V) + A-C(rN)

Thermodynamics Basics

DL(qM M & hange L
. y . g t i
b= (ry-my)} Conjugate momenta p = {py, ..y} with p,, += 254 s o s o demies
i k5 o
S Hamiltonian Function # =p - ¢ — £ with A = A(t) as a function of time which modulates the magnitude of Extensive additive, e.g. volume, mass, no. molecules of a species i,
— h :
6 = arccos T STy =TT Differential of Hamiltonian d¢ = ¢ - dp™ — p™ - dgM the reactive force. Determine A with ddtQC'(rN) =0 U, F, S, heat capacity
® Gauss Principle of Least Constraint (more general, equivalent with Intensive not additive, local only! e.g. P,T,p, chemical potential,
F, = Gmlsz F=—pgVe, F=q(E+ix B) ) aL(gM, M) " aL(qM, M) » the virtual-work principle of D’Alembert) molar(+no.)/specific(+mass) heat capacity, k- > 0, ap (usually > 0)
T d¥ =d(p-4) - ag g™ + gt dq Work W = W, + W,, volume & non-volume (e.g. electrical)
F =kt F = ko —a,)e, To Dot o7 Quantum Mechanics = 617, i= — P, - dV in closed system (deri. from P, := s
Lagrangian (Valid in any generalized coordinates) Energy (Hamiltonian CF) optional time-dependence for V As waves (interference patterns in two-slit) Chemical Potential Known levels {z;} & degenerames {g:}= u deter-
. o mined by the condition N = " n;
+ p = hk wave vector k of a particle k = 3T (1D)
& Enfor(ce consFraints,A add alftiﬁcial DOF to dynamics, Generalizing FH (g™, pM) = X (¢, pM) + V(¢™) =FE = const As particles (blackbody radia. photo-electric effect) T:‘:sr;b?:tyna"?;ba::)p‘::";snsivi(twnh iso'::())ric |sort]r:;malca zZiT_
mechanics than just point particles PR i e « E = hw energy packed in a photon ~ angular frequency w. P v, P ¥ w (n(22) pactty
. , El é) ol vz
Generalized Coordinate Systems any set of M scalars (eg. r, a, * E = hv with frequency v = 5~ wr == (58) g r = %(TP)T = (%)T = nh
dihedrals...) sufficient to specify the coordinates of all]eartic[bes |Ar11 the EOM For m — 1,..., M there are 2M — 6N 1st-order equations Copenhagen Interpretation System exists in all possible states
L . . y ) e
system & exists invertible map to express g; with rV = r"(¢") & simultaneously (superposition). Measurement causes it to randomly ,_ — L(ELV) _ 1(@) _ ,(M) F;; _ @
M = M(’I‘N> . . P = V\aT/p p\oT ) p aT ) p T,— Ty
q q . collapse into one state (wave function collapse).
i i it _ ; M _ g = 22aMpM) -
Generalized coordinates/Velocities M = 3N for N particles ¢ = Im P Correspondence principle CM as limit case of QM (i — 0). Observ- ¢, = 1(2) Yy ey & Bio=Eiota + ey, ue
{a1, - ane, @ = {dns s dar} st 7N =N (g™, ¢M) = 9%atpt) bl rery e R
) > m B0, ables rgappable to QM Hermltlan operators. on Neg
Energy (Lagrangian CF) t O o @p; — —ihg @Pz —h* s "  © B — i 2 (7)\/,7 T

. . N p? — —
£a™. M) = F(aM. M) — V(gM) Connection to Cartesian( (v, p", t) = 37 2= + V(¥ 1) Particles as waves | Wave as particles Enthalpy H = U + PV,dH = dU + VdP + PdV
q",q") =X(a",q q B p =k E = hw Isobaric (6W,, =0, dP = 0)
N pN - " - « dH =dU PdV = (6W,, + 6 PdV =4
L&(gM, g M oM o o o (™, pY) _ take position-gradient | take time derivative U +3dP7+ W, +6Q) + @
Potential £(q ) =% (g™, ¢M) V(e 1), 5 = -5 op; Py P Heat Capacity 6Q needed to raise system temperature by 1 degree.
Kinetic (quadratic) & (g, ¢™) = 1(¢™)" M (q™)¢™ Cartesian momentum - —ihge’“”*“‘f‘ - ma—e (ker—wt) Forall system C,, > Cy, > 0, ideal gas C,, — Oy, > nR
I ’ - o (rN,pN) 0V (rN) L — ih(ik)gilkr—wt) o
Mass-metric tensor Symmetric but not necessarily diagonal VP T . RLop = —ih(ik)e = —ih(—iw)el k=) Relation (for closed, uncoupled sys-
or, or; = oot ot Type Heat capacity ¢ !
N or, or, ]\e“tg?::xs'jg:auon = pe ) — Eeilkr—wt) em)
My = 15% Oq, " : M n . . . ou
EOM in Phase Space with IC *"(t,), J Hamiltonian matrix Operator acts on a wave function and returns another wave function, | Isochoric | Cv = | 77 dU = 6Q = CydT
EOM (Euler-Lagrange) from principle of least action Physical trajec- Hermitian operator has real expectation values. v

tory between system configurations at two time points minimizes action. a?

M (g2M) = d}[( )J:( 0 lM)

dz?M —IM




Isobaric dH = 6Q = CpdT

OH
-,

Ideal Gas Assumption

Negligible interactions (no medium-range attractions or short-range
repulsions). Point-like particles only interact via elastic collisions, ran-
domizing velocities. Valid when molar density ; is low, meaning low z
ratio (i.e. low pressure, high temperature) Ideal-gas equation of state
PV =nRT

- Ideal Monoatomic Gas E,, = E;, +% only kinetic

« Real gas (van der Waals) with corrections for interactions

attractive forces
reduce the effective pressure
—_—

nRT
V—nb
-

effective volume
for particles

P=

without ideal gas: particles interactions via ®approximate analytical
theories (perturb) @MD (sample finite Boltzmann-weighted ensemble
numerically)

First Law of Thermodynamics

au

-
independent of path

W +6Q

—_—
dependent on path

V(rN) + X (#+N) = E = const

Isochoric (JW,, =0, dV = 0) = dU = W +46Q =6Q
=0

1 Law of Ther ly

s -

=2
independent of path

+ 0%

>0 spontanenous -+ irreversible
=0 reversible
<0 unnatural

Internal entropy production /% =

Reversible Process 6Q = T'dS

F { [ ion of Thermody

N
dU = —PdV +TdS + Y piydn,
7

— (9F
or p; = (3",

){nJ)Av,T

Integrated form (path-independent)

N
U=-PV+TS+> un,

i=1

Spontaneity Condition of Processes

N
OW +0D > —PdV + Y pydn;

i=1

Free Energy

Helmholtz F =U - TS
+ dF = —PdV — SdT + X pdn,

GibbsG=F+PV=U+PV-TS=H—FS
« dG =VdP - SdT + ¥ pdn,

Derivation dF = dU — SdT — TdS 2 ...
Derivation dG = dU + VdP + PdV — SdT — TdS £

Calculation methods free energy related to Z, can be formally written
based on ensemble average. Problem Convergence of ensemble aver-
age in MD Challenge How to sample all relevant parts of phase space,
irr. of relative free energies. How to ensure sufficient transitions irr.
barrier heights.

Thermodynamic (Physical & Real , DOF INV)

AF = change of thermodynamic BC, AT, AV, An

Temperature/Pressure Integration more robust ®NVT simulations at
diff T/V, computer E/P ®integrate numerically over T/V

a(%) I+ F(Ty)  F(T,) _ [

= (H — = H)pd(T!

oy = (= S /T;]<>T< )
J-dav \Z

g—‘ﬁ;:—P = F(Vg)—F(V,) =— “p.av

Va

Particle Insertion estimate f,,..., %*fails for dense, large particles «»
no spontaneously formed cavities large enough to give low enough
energy of the inserted particle. Low energy (=good) configuration are
hardly sampled. (can slowly grow particles to cope, TI)

V(riest)

Hexcess = —k T In{exp (, e

For a series of equilibrium configurations of N particles @ for step i <
M randomly add 1 test particle r,. in step i (state A: N particles; state
B: N+1 particles) @ estimate AF = F(N + 1) — F(N) with the pertur-
bation formula above

AF = —kgTIn [/(exp (*%) >r];,v.,r,\,d7‘1v+1}
B

thenuse V(ryy) :=V(ry, ... 7n41) — V(ry, s y)

Conformational (Physical & Virtual, DOF -1)

Counting configurations Usable for conformational, alchemical and
thermodynamic changes 5 simple. ¢ Both states of interest must
appear. Almost never converges within finite trajectories. Insufficient
sampling of high energy conformations, insufficient transitions when
barrier between states is high. (in eq. f binary assignment function)

43wl

Umbrella sampling biased potential as position restraint, makes un-
likely configuration favorable. Ensures all relevant parts are sampled

AFp,=Fp—F, = —kBTln[

and sufficient transitions occur ¢?hard to design ®modify Hamiltonian
to account for bias @ roll back to unbiased version before direct count-
ing
Hpias (1, ) 1= FH (7, ) + Vijias (7)
exp (+ L,'c‘";(;’) )
v

" exp(+7‘};‘;(;]))

- 7 7

normalization

1 with bias
== -

w; N

Zszl,wi:

=1

<,

(Fa(r)-exp(+

AFyy = Fp— Fy = —kyTln | 22000 G0 e
BAZ BT A= TEpT A <fA<r>-exp(+‘z’T)>\,,.\J

Alchemical (Unphysical, simulation-only! DOF +1)

TI useful for alchemical, conformational and thermodynamic free-en-
ergy differences. 2 fails at orthogonal barrier/\ insufficiently smooth.
Couple endstates H(r,p; A):=(1—A)H 4(r,p) + \H z(r,p). For
NPT ensemble, and (-), ensemble average at a given A

1
AG = / dA<3ﬂ>
0 oA A

Connected to physical AG through thermodynamic cycles, two sepa-
rate TI calculations for a reaction in different phases, then compare the
relative hydration energy.

Hamiltonian Replica Exchange ® Do a given number of simulation

steps @ MC exchange between neighbouring replicas (\-points) ¢

Smoothen X curve.

(Fry s X)) = H(ris N)) = (H(rs5
kT

X)) = H(r 5 )

A=

1 for A<O
p()\iﬁ)\])_{e*A for A>0

Free-Energy Perturbation info from adjacent A-points {? small enough
A to have overlap between adjacent points
)]

Combinatorics & Statistics

cp+N =X (N)prgh
InN! = ln(Han:l n) ~ ledzlnz: NInN — N+ O(InN)

H(r,p; A+ AN =T (r,p; N
kpT

AFpy = —kBTln[<exp(

* 0, = L,if @ =1, otherwise O (unitless)

e 0(z) =0,Vz #0, [:C dzé(z) L1 (inv unit) or defined as o(z) =

dgf),@(z) =1if z >0, otherwise 0. As limit case of normalized

binning function, box gets co-thin/narrow at Az — 0. Property
J%, dzf(2)d(z —a) = f(a)

CLT For large N, the mean of N independent rv. converges to a
normal distribution with mean x and variance %2 (micro property has
1,02 = macro observable peaked at )

1 _Xpw? s
= @ )1~e 32 , for z € R,with > = N~'g?
)G

P(X)
« De Moivre (Binomial CLT)

k 2mNpq

with p,g>0andp+qg=1.

Combinatorical Problems

Distinguishable

K K!
Ny = (N) = m, k choose n
K K!
Noar = ( ) =T
My, Mgy ey Mg Hm n,,!
N, = MK

ass

« Select N elem from set of K, K - ...(K — N + 1), divide by permuta-
tions N1 (Nyy = Ny, at M =2,n) = N,ny = K — N)

« Partition a set of Kelem into M subsets of ny, ..., n,, elem, M subsets
each with n;! permutations to divide
» 6 diff fruits into M = 3 subsets of 1, 2and 3, N,,, = Pt

« Assign K objects to M sets. e.g. binary bit assignment, each set m; as
a digit/bit, K objects values {0,1}

Indistinguishable distribute K objects into M sets.

N = (K+M—1> _(K+M—1)
dis = K T OK!(M—1)!
X~ p(z) =PX = x| E[X] Var[X]
Ber(p) pP(l-p)—" P p(1—p)
Bin(n,p) ()P -p"* np  np(l—p)
Poisson(\) e’*% A A
Geom(p)  p(1-p)*"! g 2
U([a, b)) L ifz € [o,b)] ot Hb-a?
0 else
Exp(}) e if 3> 0 X =
0 else
T—p 2
Nwo)  poew(-E) w0
Stochastic Processes

corresponds to a sequence of values Xy ={z; |i=1,2,...,N} (or
continuous X, = {z, | t € R*}), values in sequence occur randomly
and distributed deterministically (i.e. well-defined p(z,,.,,, z,))

Uniform Process

Pseudo-random numbers (MCGxcongruential, Mersenne Twister)
generates non-correlated uniform real numbers over [0, 1). . Machine
precision involves non-uniformity already. No single necessary and
sufficient test!

« @ Uniformity repeats x? test for N > 10 - #bin = 10K

1 & [n,— KN)?
2 _ & K
X ’K; KN
2
Y<UR

+ @ Correlation for & points (z,z;,,); == 4% X1 F 2,48

(@imin)i — (@) i(@isn)s

C(k) = () — (@) ()

« No correlation (z,z;,,); — (z;); (1), Lo C(k)=0

Binomial Process
Bernoulli process independent successive trials and thus indepen-
dent, observing n successes <> Binomial distribution

Random Walk direction of diff steps are uncorrelated

In 1D Random walk each step of length z is a Bernoulli process p «»
a step to right.

E[Z) =N - (2p—1)z,Var[Z] = 4N - p(1 — p)2*

Probability of a given net move Z over N steps
« Net displacement to right M (n) = n — (N — n) (right - left)




Py(n;p) = (JZ)P"(lfp)N’” for n € [N]

= m+n
P(M) =N Pb(iz ;IJ)
N Nem
=TM+N - (N+A1>I’7L(1 *I))N z
2
De Moivre
- m+n
P(M) = ypn ‘Pb( B} ?P)
1 (5% )
N YM4N T e  2NPP
V537Np(1—p)
1 _(MeN(1-2p)?
RYMpN e N7
37Np(1—p)

Symmetric 1D (p = 0.5) mean effec displacement 0
M P(M) =VYM4+N " (N+M)27

Var[Z] =

N2z De Moivre P(M) ~ e 3%

N YM4N F
RW 3D Approach @ generate Az; uniformly & uncorrelatedly (Pcube-
corner (walk of variable size & anisotropy) @ Generate 3D coord
for r directly—rescale or discard for fixed steps (inefficient) ® Use
normally distributed Az;, rescale to Ar, no rejection needed

In Polar, (Az, Ay, Az)T =
tionand ¢ ~ U([0, 27)), u ~

Ar(cos 0 cos p, cos O sin ¢, sin 0)T, no rejec-
U([—1,1)),0 = arccos(u)

Process (Contil )

Cont-Time White-Noise (CTWN) z, ~ V' (0,0?), Vt needs to be Oy =
0 @ const std dev ® z, and z,,,, uncorrelated Vu.

Wiener Process (Brownian) N iid rv. &

0,1, W™ = fz V&, W, =limy o WY

- @unit of W, is f @cont ®not diff-able in ¢

- @incre are Gaussian, V¢ > 0,u > 0, (W,,, — W,)
dependent, Vs < t, W,,, — W, independent of W,

« ®scale inv, scaled 2W,z, still Wiener with o # 0

Statistical Physics

Microstate choice made for all variables (huge amount). Intrinsically
equally probable microstates, quantum states m € {0,1,..., M — 1},
phase-space volume elements 2?Ndx?". Macrostate choice made
for independent variables eg. Z = {n,V, T}, projection of huge no.
microstates. Compatibility by impose ®system constraints: affects
system individually @ensemble constraints: collectively

my}

Population vector defines one possible way to distribute n:=
) - ; ;

{ny,ng,...,np} with Zf::l n,, = K no. objects assigned to set m is

n,

~N(0,1) for te

~ N(0,u), and in-

Assignment vector m := {m,, m,, ...,

'm

Map m to n (N, < N, and Ny, < N,

ass

K
= bum
= —

is object k assigned
to subset m?

for large K, M)

Statistical weight W, of population vector n when distributing K
objects into M bins <+ no. assignments compatible with the corre-

sponding populations. For n, Ny choices and 3 Wi (n) = N,
K!
Wy(n) = = = Np&r
[T,y !

« Brute-force O(MX), Wy (n) == Zﬁ“‘:M'( Sp(m)m

Distribution Vector p =

Example: Given a system with three states M = 3 and an ensemble

with six systems K = 6.
« How many possible distinct assignment vectors are there?
N, = MX =30=1729
« What is the number of possible distinct distributions (i.e. number of
possible population vectors)?

(K + M —1)!
KI(M —1)!

8!
6

_(6+3-1)!
63— 1)!

dis —

« What is the statistical weight of a population that consists of n =
{3,2,1}?

K!
l—[l\l g |
Postulate of a priori Equiprobability All microstates equally probable,
except when limited by macroscopic constraints = ®Without con-
straints, all m, equally probable @probability of . in a collection

assign pop

of random ensembles ~ statistical weight of it

Wi_e(n={32,1}) =

6!
= 60

BEIE

{Pos---»Prr_1} N choices. (Fractional-Popula-

tion)

def =
m = K, wichpm:I
=

Normalized probability of p

« with weight W (Kp) =
. Kl

P(p)= ————

) R I

Peaking of the Distribution Probability The probability Py (p) of dis-
tributions p becomes more peaked as K 1, at limit K — oo a single
most-probable distribution (the average & the only relevant one).

© p=1p0,p1 s prsa} With M 2 p =1

M¥ Py (p)

withz Pg(p)=1
P

Ensemble Average (E at equilibrium)

For peaked distribution (4) = =¥ p, 4,

M-1
(A =lm > Pe®) Y pw Am
L K00 — zm
macro. value ? " micro. value
over in state m
distributions
Calculation with £ = B3N Nl units: [¢] = —Log = [p(a?V)]

(A)=¢271 /drdp/le"”{
Z= .5/drdp - e~ P7C with ¢ = (B3NN
Phase-Space Probability Density
(@) with [ d?p(@?) =1
Ensemble Average
) = [ 2N pla?) AG)
Entropy

§ =~k [ da?Vo(a®) mlep(aV)]

Boltzmann & Gibbs Entropy

Boltzmann postulate S as logarithmic measure of Wy (p)

Boltzmann Entropy

Sk(p) = kpK 'InWg(Kp)

Gibbs Entropy

M-1

S(p) = ~kp Y ppln
m=0

In the limit of an infinite ensemble

Inthelimit K — oo, the entropy of a thermodynamic system is uniquely
defined by the given macroscopic constraints S := S(N,V,T).

Se(p) = lim Syc(p) *'E™ Jim kyK ' InWy(Kp)
K00 K—o00 —
— i -1
=k lim K In Wy (Kp)

Gibb: =
2 kg Y P In(py)

m=0

Statistical

hypothetical construct consisting of K i.i.d. copies of the system. En-
semble itself represents 1 macrostate, with system copies in different
microstates. Time-independent (Liouville)

« ranked by most common left NPT > pVT ZNVT > NVE

« isochoric dV, adiabatic dQ, isothermal dT', isobaric dP

Ensemble Experiment
microcanoni- isolated (in practice not achievable, in MD no per-
cal (NVE,,) fect E,,, conservation)

« plain MD or MC + “ergostat”
canonical closed + thermostat + rigid container
(NVT) « MD + thermostat or MC or SD
isothermal- closed + thermostat + barostat
isobaric (NPT/ | « MD+thermostat+barostat
Gibbs) « MC+barostat

» SD+barostat
grand-canoni- | open+thermostat+fixed volume
cal (uvVT) « MD+thermostat

- MC

others isoenthalpic-isobaric (NPH), grand-microcanonical,
isoenthalpic-isobaric, generalized

grand-

Microcanonical Ensemble (NVE) (closed, dV,dQ = 0)

Const N,V, E,, (system constraints), N,V define energy levels E =
{Eo, - E;_1}, By = 0 and degeneracies g = {go, ..., g, }. Value of E
some E;, level denoted as j(E)

Continuous (Classical)
P = CUE)S(E ~ E,,)
p(a?N) = 607N (B)O(E — (22N

Discrete p,, = 1/g;5

s _ -1
Pm = 95(8)%5,,.4(5)

)

S =kglngg S =kgnQ(E)

Boltzmann Entropy derived from Gibbs Entropy Definition

M-1
Sic(pm) < ki Z(%(E)‘;]m ae) (9595, m)
M-1
= kpgjny n(g5:)) Y (55,.50)

9i(E)

Density of States (QM & Classical) units: [2] =

morgy

M-1 J-1
=Y dE-E,) =) g0(E-E;)
m=0 =0

B)=¢ [d?Ns(E - #(@)

area of hypersurface 7 = E
in the phase space

C ical

ble (NVT) (closed, dV, dT = 0)

Const N,V (system) E (ensemble), E = E(N, V) limits

(BM) Distribution 2 ensemble constraints, 3> p,, =1
« AE 1= exponential population decrease
« populated energies p(E) is a peaky region

M-1
P = Z e PPm with Z = Z e FEm
m=0
Lemma. it also holds that
M-1

me—landE me m

Discrete Continuous (Classical)

P = 7 1eBEn p(z2N> — 52—1e—m{(zm)

M-1

with Z = Z e P
m=0

with Z = ¢ / da?N =B (@)

S =kpnZ+ kpBE

U-U,
=>S=kplnZ+——"

[

5= kg [ de? nle (@)

Helmbholtz Free Energy FF = —kzTInZ 4+ U,
. Reformulate( )to TS = ..., plugin
cFRU-TS&F=U- (TkBan+(U—UU))

Pressure P = kBT<a'?l;\'/Z)N,T - (%[{;)N

« dF = —PdV — SdT, plug in F reformulate
P =—(3), = (D 4 5
T

av v

Internal Energy & two thermo laws (U = E + U,)
U—_ (31[1 Z)

6ﬂ N,V

for a reversible process, dU in a closed system is reversible

. {dU + XM dE, + M

+U,

o

o Bndppn
Wiey + 6Que, = —PdV + Tas

rev

Volume Work as Change of Levels not Populations

M-1
=—PdV =dU,+ Y p,dE,,

m=0

oW,

Tev

Heat Work as Change of Populations not Levels

M-1
0Quy =TdS = Y E,dp,,
o

. vN
Ideal Monoatomic Gas Z = 3y - ( 5

@ Internal energy

v
@ Pressure P = 1218V~ —

® Helmholtz Free Energy



Fluctuations of a quantity (Q) = 3_. P,Q;

VN omm\ 2 trajectory of a single system. Holds for K — oo and ¢t — oo (the latter symmetric
e . ( ) not in MD) average (v,) v, - p(v,)dy, = 0
RN\ B . i
1

3 a 0 — ergodic
Stirling 2 Equipartition Theorem MS (v3) = rinciple _ t
L:g—[i’lln( NlnN+N+N1nV+N1n<ﬂ7;ZL) ) b pm @ ::/dQ-P(Q)Qp ’ (Q):Q:%/ aQ(t)
3 e
N FM 1k, T per DOF. Holds only at equilibrium & classical limit, quan- 3D Vector Distribution p(v (‘””) etz L
—_Npt (1 i \4 (21rm 2 tum effects (low T)) reduce this capacity. Norm Distribution [ dz/p(u) -1 Standard Deviation Over Ensemble
Bh? 0 1
1 N3
(30 = b Nyt b\t 7= ([0 P@(@- @)
@ Entropy p(v) = 47?( ) Ve 2
27 ergodic 1
2 q q ; - principle t _ 2
S=kp 3N en[14m K(hr;) 3 Ideal Gas (No interactions = Energies additive) g\ s LUQ _ (% / dt - (Q(t) 7Q)2) it = o0
2 Bh average (v) = ( B ) 0
. Distinguishable (CM) (atoms in molecule/solid) mem .
Nk | v (zwm)f 3 1 Single-Sweep
= B + n— N 1_ (3
B z-]]z RMS (v2) ([m)
n 2 \} 75 = (@7 —2Q(Q) +(Q)*) = (@) — (@)*
Isothermal-isobaric (NPT) (closed, dP, dT = 0) Indistinguishable (QM) (liquid/gas, Fermion/Bosons) neglecting QM most probable v* = (@)
symmetry issues (to account, Fermi-Dirac/Bose-Einstein statistics, at Gaussian (Q) — yand (Q — p)2) = (Q2) — u? = o2
Const N (system) V, E (ensemble), V-dependent states. With contin- limit Boltzmann) [s/m] H # H
uous volume variable normalized [ dV 3> p,,,(V) = 1and¢ := P with N Canonical/Isothermal-Isobaric/Grand-Canonical the relative fluc-
unit volume" 7 % Hzn . 100K tuations of all dependent extensive quantities scale with the no. of
W) = 73 v () tn [\ particles N as o« N~z. Fluc. of sum of normal dist scales as M oS
(V) = cg-ePhm . [ ) N R
wer Over states it holds N~z
_ s00K
Zypr = g/‘”’ze ) M1 L S - ] ) CyaN &
" =3 eom 0% = kgT?Cy =710, T = TE o« N72
. . ‘dof — Neon : 20.1 g/mol Argon : 39.9 g/mol ( )
NPT & NVT Partition Function m=0 il ” VN pu
over levels it holds = o = kpTVieg = 57 Vir = ﬁ N
Znpr =5+ /dV e PPV Zvr . 100K || 100k
Jaor—1 \ =kgTNvkp =B prp N = 5 « N7%
5 = of o —BE}! il ok =kgTNv 'rp T
Zypr =< E[dV [ da?N . e YY) 2o = Z gyte Pt ) al <N>
. de PPV (5 ) fda:” ) efgx,,(wz.».],)) ’ 4 500K f 500k In the thermodynamic limit N — oo, all observables become fluctu-
= S S, Maxwell-Boltzmann (MB) — = — [mis] S ms)  ation-free in terms of relative fluctuations and a one-component one-
=c- [dV e PPV Zyyr e 2! phase system can be equivalently specified by any combination of
Enthalpy Y,, (V) = E,,,(V) + PV Write down the equation given P, for Boltzmann Given energy levels ~ Factorization of Partition Function Z three variables (water 1 kg, 1 L, 300 K = water 1 kg, 1 bar, 300 K)
E, = nAE withn = 0,1,2,3 Derivation
NPT Ensemble Average . Canonical Z = Zy. - Zy, using 7 (22V) = X (p") + V(r") 0z
e FBT = =N"—E,efFn = _Z(E)
= /dVZAm(V) (V) P, = - Znyr = € [ da?NeBIH(E) 2 ;
: m Ezs(o 123 ¢ ° VT 927
o . . 957 = SN E2efFn = Z(E?)
higher pressure Equalities for ¢, u and o2 - (g/de(fﬂ]f(P”O (/ drl\"g*ﬁV(T“N)) k m
-pPV P({V) <: — lower average
¢ Zyor /9(E) volume L P Py 1922 (1 (0z)\? 9
14 dap(z) /5 Momentum '\ configuration 2 _ <E2> _ (E>2 _1 (L (oz _ 7—(E)
more nogative 7k zop  \z2\ap s
chomical potential e - Momentum integral depends not on intermolecular interactions.
—» lower aver: N .
numbor of moleeules = (z) :/ dz - zp(z) Translational E,;, only. For canonical ensemble oA oU (11 B 1 8 B
Vv = v T e . W g\ v=\ar 98) AT~ kpT? 5"
2 =RENNT T
o = (-7 = [ date—ppie) lpu= T =€ ( [ ﬂ*) = (5
NPT/uVT o —c0 Bh? Covariance
Interpretation MB Distribution of Velocity (momenta), often for monoatomic gases, Configuration integral For jdeal gas factorizable into different modes. C,, =((a—a)- (z; — Z)) = (ab) —ab
1. Compressibility generally applicable in all phases within classical limit. (speed of For liquids and solids, modes not decouple-able from interactions, no
v sound, helium voice). Let p(v)dv be the probability that the velocity possible partition — MD necessary! Cross-correlation normalized covariance
- =—Vkr <0 iclei > )=
(0},) o T (norm) of a gas particle is between vand v + dv, such that fu p(v)dv By o +1 perfect correlation
' Z =Zyo Zngy Lty Zetee * Lue Cap = o (;’ — < 0 no correlation
2. Molar Volume 3m 0\ 2 3mo = —— a®b —1 perfect anticorrelation
o) = an( 2 ey (77> o
(%) = N:T >0 e " Rigid Linear rotor (approx valid T sufficient high, else exact) Autocorrelation Function Ca(r) = (Q(1)Q(r + 1))
Consider NVT at classical level and in Cartesian coordinate . z - g l( . de o1 0 Statistics (ii.d. & indistinguishable)
Ergodic Theorem (Trajectory <> Ensemble Average) 1D Distribution for velocity component a = z,y, 2 ot 2+ 1)e o ¢ AT = e
1 Fermi-Dirac/Bose-E/M-Boltzmann (low p or high T limit) This plot is
e plv,) = (@) 2 e% Harm Oscillator (CM approx not necessarily valid at room T not of distribution!
- « 27
- * 1
All accessible states must be visited multiple times within the obser- Zegpe = e fhen L T o ion

vation period. Instead of average over system copies, average over n=0



T BoselElns(em'
Maxwell-Boltzmann
Fermi-Dirac
251+ 4
2 4
E 15+ <
1 4
05| |
0 L s
-4 -3 -2 -1 0 1 2 3 4
(e-u)KT
|
g;!
Wepm = [ N =[] 7 (g, —m,)!
i 5 M9 T )
— 1
W\ = H N — H (nj+g;,—1)!
BE(n) = dis = (g, —1)!
J 7 Y :
(9;+n;—1)!

WMB(n) = H ﬂ, where L ~ gne
kol (9, - (g, —1)!

Distribution Functions @ Use Stirling and differentiate

gi—n _
Tml“WFD(") = 1DITI =In(fpp; —1)
n;+g;—1 _
o In Wpp,) = In T =In(fgk;+1)
—— InWypp,) =In i il
on; ) n; "
A A n A
where fpp; = ¢4 fpe, = g and fup,; = ¢
@ Max. W, Lagrange multipliers (8 = ,CB%Tﬂ =5l =—hn
9 InW(n)—aY n;—BY ne;| =0,Vi
87% 5 J 3 777
fepi = P oy ! T
= fori = ey = o singular at g, = p

P
fup; = e~(@4Pe) = Z-1 . e=Pei with Z = e Pk

Pauli Exclusion Principle There cannot be more than one fermion in a
given quantum state, unconstrained for bosons. At limit 7 — 0

« FD:alllevels ¢, to e := lim_,, u occupied with 1 Fermion each

» BE:all particles at lowest leveley = 1

Biomolecules Amino acids, Carbohydrates (Monosaccharides, Disac-
charides), Lipids (amphiphilic), Nucleic acids, DNA/RNA Environment
ions, water (high C,, dipole moment, H-bonding capacity) Protein
have secondary structure (a-helix, 7-helix, 8-sheets) representation
@ Van der Waals spheres @ Caroon representation for only backbones
(with torsional angles) MD Num integration over the classical EOM
(Newton), Cartesian coord. Simulating biological system < solving the
many-particle problem

Degrees of Freedom - Coarse-grain (CG) model

QM description (with electrons), valid when small systems (100
atoms). Negligible QM effects in large systems.

CG models reduce DOFs & interactions while @ align with research
needs @ eliminate mostly decoupled DOFs. ® remained DOF easily rep-
resentable. {ILess transferability, altered physics, unphysical entropy/
energy balance. ¢bspeedup

Atoms: United Atoms, ®remove non-essential DOFs (e.g. H-atoms in

lipids) @replace functional groups (CH, CH,) with larger atoms ¢* Not
for strong hydrogen-bonding atoms (O, N, S, P).

Supra-atomic:

Iterative boltzmann inversion reproduces structure, not forces
Force matching reproduces forces, not structure. Compute F,, on
mapped atoms for each CG bead—least-square match force distrib-
utions with effective pair potentials

Fitting to Thermodynamic Properties (MARTINI): Start with atom-
istic guesses, then systematically scan parameters. ¢ Can lead to
loss of essential DOFs and may require elastic networks for main-
taining protein 2nd, tertiary structures.

Inter in Cla

[ istic Force Fields (FF)

Classical FF VPbs(pN), with »V = (ry, 7y, ...,7y)

- often underdetermined, too many parameter/experimental data
lacks V() = prhvs(plN) 4 pspecial (pN) - Special terms from NMR
data, biased sampling. Physical terms (if two atoms — ignore the 3°):

N onds 2
P = 530 LR by () b

pon(9) = £ L6, — )"

sion(rN torsions 2
promion(r®) = F KE 14 cos(myp, (1) —6,)]

Praw(rN) _ ¥ s o deis [(;':]) = (%) s]

3

pele(rN) — > 199

pairs i<j ATEoe,. Ti;

and N-body polar. energy V!, external fields energy Vet

dihedrals
T

Effective FF (Parameterized) shall be representative with correct
physics, simple with few terms, efficient with no complex derivatives
and exponential terms and parameters transferable for a range of
molecules

Configuration Generation

High-dimensional space; global minimum impractical. Goal Generate
low-energy, Boltzmann-weighted IC/configurations ®Search: Find and
minimize low-energy regions. @Sample: Explore configurations (me-
tropolis MC, modified MD with biasing). ®Simulate: Use dynamics (MD,
SD, BD).

Key properties of the required method

Search Simulate

X

Sample

X X

« Boltzmann-weighted ensemble: thermodynamic properties can be
calculated

« Physically-based sequence of configurations through classical
EOM: dynamic properties can be calculated

Init Coordinates Specified E,.Choose carefully (e.g., X-ray/NMR)
unless longer equilibration than conformational relaxation time. Init
Velocities Specified E,;,, generally unimportant due to fast relaxation
(ps), useful for initial £. Random from fy;; at some 7. Bond-Length
Constraints freeze bond vibrations, valid if bonds weakly coupled, in
ground state.c)freezed bonds allow At — 2 s (before 0.5 — 1 fs for fast
vibration)

Integrators good accuracy, conservation of properties compatible with
thermo/barostating (symplectic, phase-space-volume preserving), re-
versible in time.

Timestep At ~ - n Periodof fustest motion Tradeoff Too short poor sam-

1 \
50 180 270 360
o ldeg]

electrostatic
T T

Vi)

L
04 08 1z 1s
7y Inml

Non-bonded elec, vdW as interactions of atoms independent of net
charge. (Repulsion (short-range forces) of nuclei (Coulomb, Pauli’s
principle), Attraction (long-range forces) of induced dipoles from fluc-
tuations in electron clouds (London forces), LI used to approximate
vdw)

*vdW* strong short-range repulsion upon atom overlap (Pauli exclu-
sion) & longer-range attraction by electron correlation (instantaneous
dipole-dipole interactions, termed London dispersion)

VSW(rArD) = Cly(rg — 7)712 = Cy(rg — 7')76

Bonded bonds, angles torsions, improper dihedrals

Morse function for covalent bond stretching Sbond-break (dissocia-

tion) possible {?comp. expensive b;; : length of the bond between
atomsiand j

AL A
VMore(p(2); D, K230 = ZDn{l 76([ ( t ) (b () 1,,])}

Harmonic approximation ¢5simple, cheap ¢?no dissociation

Vi () KD 00) = 3 %Kg(bnm - bg)z

pling, too long poor energy conservation & overflow
Not time reversible Euler, error O(A?). RK, error O(A%).

Time-reversible leap-frog, symplectic, error O(A?) in both coordi-
nates and velocities. Interleaving cancels out leading error term O(A?)

v(t+ %At) = v(t — %At) +a(t)At
r(t+ At) = r(t) + v(t + %At) At

SHAKE in Cartesian easy geometric constraints, existing iterative
methods {large movement within one timestep has no convergence
guarantee = indicates bad simulation setup (skip energy minimiza-
tion), timestep cannot be too long, lightest atom moves first (Newton’s
3rd) SHAKE how iterative for multiple bonds iterate with relative tol
104, for a single bond ®free-fight step (unconstrained) @coordinate
resetting(SHAKE)

Spatial BC

Finite-size (FS) due to miscroscopic nature, lack of solute-solvent
interactions, cannot model intra-solute vdW/electrostatics. Surface
effect (SE) system has a large surface-to-volume ratio, increased sur-
face tension proportionally.

macroscopic

microscopic

@

+

interaction range

FS SE
Vacuum {Acompactness, spherical shape,
strong electrostatics
Implicit - Large | hcheap (exact location of solute-
solvent solvent boundary, parameter-sensi-
tive (charges, radii)
Finite Large (AP too high, solvent evaporation, sur-
system face-layer artifacts, strong electrosta-
(droplet/ tics
solvent
layer)
Periodic | Large | © - | artificial anisotropy/periodicity, high
(most- effective concentration, expensive, FS
used) still present!

Finite-system BC needs confinement potential (LJ wall to confine
sample, prevent evaporation and mimic dispersion), orientation cor-
rection potential (prevents solvent preferential orientation & inhomo-

geneous distribution at surface {?poorly transferable)

Periodic BC explicit-solvent, mimics infinite lattice of periodic copies
of the reference box. Particles exit box through one face translated and
reenter through opposite. Infinite surface — no SE. Long-range inter-
action evaluated using lattice-sum methods (Fourier), or Minimum-
image pair, atom with closest periodic replica of another one with
cut-off distance. Short-range like covalent easy to compute, act only
between minimum images.

Box shape rectangular prism used for long (elongated), if rotates need
roto-translational constraint since molecule otherwise interacts with
its replica out-of-bound. Hexagon used for DNA, cube isotropic thus no
roto-fix needed but requires much solvent, octahedron for spherical
molecules, almost isotropic, less solvent. Triclinic for crystal, reshape-
able

Minimum solute-to-wall distance £ no solute atom interacts with
solute atom in periodic copy, R no solvent molecule interacts with
solute atom in two solute periodic copies.

Thermodynamic BC

Plain MD microcanonical, Newtonian EOM conserves E, and L,
in vacuum, if periodic rotation in each cell coupled with friction, no
conservation of L. Quantities T', P dependent, calculated as T =
(T), P = (), have non-zero fluctuations for finite-systems.

Grand-canonical simulations, no. particles vary (uncommon), p held
constant on average @] A is not instantaneous observable, discrete
variation — jumps in dynamics, equilibration needed after each jump

Thermo/Barostating Overview ®Constraining Fixes values exactly €%
Hamiltonian form, configuration distribution correct {Punphysical, no
fluctuations ®@Weak-coupling (Berendsen) ¢1-st order exponential
relaxation (physical)¢?depends on thermostat coupling time (friction

coeff ¢z = i% unit: time~1), only approx canonical ®Extended



system (Nosé-Hoover) ¢ = #(% —1) own EOM, X > K, frictiont,
brakes particles ~ A%, €2nd-order relaxation, canonical(?oscil-
latory(unphysical) @Stochastic €%1-st order exponential relaxation,
canonical, thermalization efficient, few artifacts ¢?non-deterministic,

local thermostating (unphysical dynamics)
Thermostat To ensure By, = X (¢ + 3)

(ﬂ:z;)é leapfrog w(t + 2) = v(t— 5) + M'F(t)A

= K, we scale the velocity A =

@Collision within 71 period, pick & assign v ~ fyp(T,) of an atom
randomly = (T') =T,

ref

@g.ar;gevm EOM m,i; = Fy(r(t)) + R;(t) — m;7;7;(t) results in (T)

T,

Gy kp el

Barostat 7 = P,

instan

> Py = box V' 1, adjust coord

Instan temperature (equipart, at equilibrium (7) =

_ 2
NDkB
3N
(%) = <%m01/§> _ kB;T set of dofs x) = NDZkBT

Instan pressure (virial)

P 2K —W) _ NkgT 2W
3w v 3V
ideal gas intermolecular
kinetic energy forces
P 2K -W)\ _ NkgT  [2W
N 3V v 3V

instan virial (isotropic) interm forces, correction term
N
1 . .
W= ~3 Zn - F; > 0= P | (attractive, pull inwards)
i=1

long t;,, for good averaging, P highly fluctuating (1 bar fluc in order ~
100 bar)

Thermostat Barostat
N =0 N=0
=V, X =V, X +xr
p=-V,U—(p| P=—V.U—xp
V=0 V=3Vx

Equipartition Violation (heterogeneous T)

1. Hot/Cold-solvent (hetero. spatial regions) solvent subjected to
more heating than solute and E,;, exchanged slowly, correct T but
solute simulated to be colder than solvent — couple solute and
solvent dof to separate thermostats

2. Vibrationally-cold gas (hetero. dof) translation, rotation, vibration
modes coupled to the same thermostat should have diff. temp in
an ideal gas — couple diff modes to separate thermostats or use
stochastic approach

Uncoupled DOF Issues: Exclude linear/angular momentum from tem-

perature/pressure calculations to avoid errors (e.g., flying ice-cube
effect). Linear Momentum has no effect on system property (Move a
glass of water+ T 1), Angular Momentum (centrifugal forces).

Calculation of Properties

MC Sampling

¢y simple, cheap, no derivatives of ¥ for force needed, applicable
to discontinuous V,efficient unphysical (but reversible) moves can
be designed for improved sampling {?non-deterministic, no dynamic
information, hard to design params (acceptance ratio etc.)

Stochastic Dynamics mimics following effects without explicit solvent
molecules, samples NVT.

® Mean Solvent Effect thermodynamics, dispersive attraction re-
duced in non-polar solvent, enhanced in polar solvents (hydrophobic)

® Stochastic Collisions dynamics, random but constrained forces on
solute atoms from solvent.

® Frictional Drag dynamics, solvent-induced friction reduces solute
atom velocities.

Langevin m;#; = Fy" — m;y;7; + om;
R

—_
mean - frictional  stochstic
force  foren 0

1

« n; = n,;(t) ~ N white-noise in unit of time™2, stochastic force ampli-
tude o; (unit: force x time?), ~ (unit time™)
dv

m— =F —myv + o
at Y n

v(t) = e |:v(0) +m! /t dt’ - e (F(t') + on(t'))
0

« Zero-friction limit (y = 0,0 = 0) +» Newton equation of MD
« High-friction limit <> Brownian Dynamics

Brownian Dynamics (BD) valid microscopically with low Re viscosity
dominates turbulent flow, derivable from Langevin
A= Fy = myyis + o,
© myyt; = F +om;
we neglect inertial term by setting the RHS to zero at the limit where
[mts] < [mgyi]

Fokker-Plank (FP) with SDE i(t) = A(z,t) + B(z,t)n(t)

(@:1) )p(z, t)

19
+—B

p(z,t) = (*%A(z,t) 2922

FP Equation for BD with SDE myi = F + on

" 19 9%
p(z,t) = 7m—6—F(z t) x +D8 5 % |p(z,)

drift

=
term diffusion
term

l(L)Q
2\ my

Calculation of Properties (4-step process)

v,0 and T Connection ¢ = 23 'm~, D :=

@Preprocess raw trajectories (periodic gather macromolecule locates
at box edges. Gather by pick atom within reference box and follow
covalent bonds {Pwith multiple solutes & roto-translational fitting (?
no strict decoupling, x,,~dependent)

®@Time series analysis Statistical Moments (1st-4th) with decreasing
accuracy p, o2, skewness, kurtosis

®Calculate properties
=—D-Ve(r,t)

Diffusion Equation Zc(r,t) = DV2c(r,t)
« ¢ concentration of solute, D diffusion constant

Fick’s Law j(r,t)

@Interpret results

Equilibration: Discard initial simulation period to remove non-repre- ,
sentative conditions, monitored by stabilization of observables. ¢?

No guarantee unless good initial configurations Best practice: use

multiple simulations (too costly), more ¢, sampling enhancement

techniques

Estimation of Statistical Errors Error on p of N normal distribution,

confidence factorc (¢ = 1 — 68%, 2 — 95%, 3 — 99.7%) € = cﬁ Effec-

tive no. samples c — c%
N

et

Theoretical QM calculations (reference bond length by, k, in V7bo"d)

Experimental crystallographic structure determination (reference
bond length &), infrared/Raman spectroscopy measurements (k, in
‘I;boml)

Units

. kg 7—1381x10 By K
< B= , N, ~ 6.02214076 x 10%mol~!

kBT’ n= NA
c h=66-10"J sorh =
n—:’i;zzn for n=1,2,.
Quantity Units
acceleration a m/s?
pressure P Pa = N/m? = J/m®atm =1.013 bar
Moment/work/energy J=Ws=Nm
Power W =Nm/s
Gas constant R k3/(mol-K)
Potential energy V k3/mol

« [kJ - mol™ - m~3][m?] = [mol][kJ - mol * K] [K] (PV = nRT)
« Planck constant: [h] = action
* units: [S] = OB

temperature

diffusion constant with units C“““‘

Maths Tools

Jor [z) <1
T

> 1
-
St

. . _ [Zifneven
Gaussian over R*, with ¢,, == {1 it n odd

,/:’

I,(a) e dz,a >0 = Ve, - (n— 1)!1(2a) %"

n=0 n=2 n=4
T/m\z|1/7\2|3/7\*
36 [i@) [5)
n=1 n=23 n=>5
) S
2a 2a? a?

o n_—ax? _ J2I,(a)ifn even
overR, [ a"e™* dz = {0 i n odd

Normalized Gaussian 21, _(a) = e

Impor]'tant Numbers
- (8)7 ~1.60

- V2x 141, 7 ~ 0.70710
. V3x1.73, ~ 0.577
V5 ~ 2.236, (ff ~ 0.4472

Fermi function f = eTH



