
Software Engineering
You Wu - youwuyou@ethz.ch. version: 14/02/2024

1. Specifications and Modelling
How to document?

• Comments: simple, flexible; targets humans
• Metadata: annotations allow one to attach additional information

1. Static processing: type checks, compiler warnings
2. Dynamics processing: dependency injection, role-based access checks

@NonNull Bitmap getImage(){
 ...
}

@deprecated("no longer necessary", "1.3.1") def
removeCopies(){
 ...
}

• Types and modifiers: document basic properties; eg. memory location, inputs, results, invariants
• Effect systems: extensions of type systems, describe computational effects

• exceptions, I/O effects, (de)-allocation, locking, termination, determinism
fun sqr: (int)->total int // mathematical total function
fun divide : (int, int)-> exn int // may raise an exception (partial)
fun turing: (tape) -> div int // may not terminate (diverge)
fun print: (string) -> console() // may write to the console
fun rand: () -> ndet int // non-deterministic

• Contracts: stylized assertions; part of the specification, not of the implementation
• only pure expressions that do not modify the program state can be used in pre/postconditions &

invariants
• ❌ x++
• ✅ x>0, x < std::numeric_limits<int>::max()

• use getters and give complete range constraints
• ❌ 0 <= self.x_ <= self.n_
• ✅ 0 <= GetX() < GetN()

preconditions The conditions the caller of a function has to fulfill to be able to perform the call.

E.g., to call the sqrt(x) function, which computes the square root of its argument,
the caller has to provide a value x >= 0.

postconditions The guarantees the caller gets after the method is executed.

1. What members don’t change
// post-condition: GetY() == old(GetY())
// ...: old(GetN()) == GetN()

2. What members change [case distinction]
// old(GetX()) == 0 => GetX() == GetN() - 1
// old(GetX()) > 0 => GetX() == old(GetX()) - 1

invariants The conditions that all the instances of a class have to satisfy while they can be
observed by the clients.
• Thus class invariants may be temporarily violated when the class instances are

not observable by clients

In boost:contract, Class invariants are defined in a special void invariant()
const member function that must be public.
 void invariant() const {
 BOOST_CONTRACT_ASSERT(buffer_ != nullptr);
 BOOST_CONTRACT_ASSERT(0 <= size_);
 BOOST_CONTRACT_ASSERT(size_ <= capacity_);
 BOOST_CONTRACT_ASSERT(0 < capacity_);
}

What to document?

1. Member functions and constructors
• arguments and input state
• results and output state
• effects/throws

2. Data structure
• value and structural invariants
• one-state and temporal invariants

3. Algorithms
• behavior of code snippets (analogous to

member functions)
• explanation of control flow
• justification of assumptions

For clients: Document the interface → How to
use the code? How to call a function correctly?
How the call affects the program states?
• The client interface of a class consists of con-

structors, public member functions & vari-
ables, external functions like << or std::hash

• Explicit parameters (eg. must be non-nullptr,
point to the start? Range must be of a certain
size?)

• Implicit parameters (this-object).
For implementers: Document the implementa-
tion. → How does the code work?

2. Modularity
General design goal: Low Coupling!

• Coupling refers to the degree of interdependence between software modules
• Tightly-coupled modules cannot be used in isolation, which makes developing, testing, changing,

understanding, and reusing more difficult

1. Data coupling (Modules coupled via shared data structures)
• Problems caused by: changes in data structure; unexpected side effects; concurrency

• Approach 1. Restricting access to data
• ⚠ pointer access to member variable may allow capturing and leaking!
• values shall not be changed by client code (Concurrency, unexpected side effect)
• internal representation can be changed in the future

• Approach 2. Making shared data immutable (Flyweight)
• avoid unexpected side effects caused by other components changing data
• avoid thread synchronization issues by several components changing data at same time
• avoid invariants being broken by other components

• Approach 3. Avoiding shared data (Pipe-and-filter)

2. Procedural coupling (Modules coupled through calls)
• Problems: Callers cannot be reused without callee modules, any change in the callees may require

changes in the caller
• Approach 1. Refactor code (or even duplicate functionality)

// Dependencies between Controller and LogEntry
class LogEntry{... bool is_error(){...}};

class Sensor{
 List<LogEntry> log_data;
 List<LogEntry>& log(){return log_data;}
};

class Controller{
 Sensor sensor;
 bool selftest(){
 auto log = sensor.log();
 for(auto& e:log)
 {if (e.is_error()) return false;}
 return true;
 }
};

// After refactoring - dependencies removed
class LogEntry{... bool is_error(){...}};

class Sensor{
 List<LogEntry> log_data;
 List<LogEntry>& log(){return log_data;}

 // moved from controller to sensor
 bool no_error(){
 for(auto& e: this->log())
 {if (e.is_error()) return false;}
 return true;
 }
};

class Controller{
 Sensor sensor;
 bool selftest(){ return sensor.no_error();}
};

• Approach 2. Event-based communication (Observer Pattern)
• Approach 3. Restricting calls enforce policy restricting which modules a module may call

• Example: Multilayered/multitier architectures
1. A layer depends only on lower layers, has no knowledge of higher layers
2. Layers can be exchanged

3. Class coupling (Coupled through member types, inheritance & object creation)
• Approach 1. Abstract over concrete class types

• Use interfaces: Replace occurrences of class names by supertypes; Use the most general supertype
(eg. iterators instead of vectors); Make sure data structures can be changed without affecting the
code; Use templates, generics

• Approach 2. Refactor inheritance with subtyping + aggregation +delegation
• Problem 1. Fragile base class problem: Changes in superclasses may break subclasses
• Problem 2. Limits options for other inheritance relations. May cause conflicts with multiple in-

heritance; Multiple inheritance not always available (e.g. Java)

• Approach 3. Externalize object creation
• Goal: Avoid class dependencies via object creation via

1. Factory pattern
2. Dependency injection
3. Constructor parameters

class SymbolTable{
 Map<Ident, Type> types;

 SymbolTable(){ types =
 new TreeMap<Ident, Type>();}
}

class SymbolTable{
 Map<Ident, Type> types;

 SymbolTable(Map<Ident, Type> t){ types =
t;}
}

3. Design Patterns
Overview: Design patterns

1. Creational Pattern (factory, static factory, singleton)
2. Structural Pattern (facade, flyweight, decorator)
3. Architectural Pattern (pipes and filters, model-view-controller)
4. Behavioral Pattern (observer, visitor, strategy, template)

)

3.1. Creational Pattern (Object Creation)

3.1.1. Factory Method
• Define an interface for creating an object, but let subclasses decide which class to instantiate. Let a class

defer instantiation to subclasses
• Factory Method is a specialization of Template Method.

Scheme

3.1.2. Static Factory Method
• A class provides a static method dedicated to instance creation.

Example:
class Response {
 public:
 static std::shared_ptr<Response> NotFoundResponse()
 { return std::make_shared<NotFoundResponse>();}

 static std::shared_ptr<Response> MarkdownResponse(const std::string& body)
 { return std::make_shared<MarkdownResponse>(body); }

 static std::shared_ptr<Response> XMLFileResponse(std::string path)
 { return std::make_shared<XMLFileResponse>(path); }
};

3.1.3. Singleton
Ensures a class only has one instance that gets created and provides a global point of access to it (not possible
with a regular constructor)
Caution: The pattern requires special treatment in a multithreaded environment so that multiple threads
won’t create a singleton object several times.
Properties:
1. The default constructor is private
2. The static creation method getInstance() acts as a constructor. Under the hood, this method calls the

private constructor to create an object and saves it in a static field. All following calls to this method return
the cached object. (Lazy initialization)

1

https://refactoring.guru/design-patterns/creational-patterns
https://refactoring.guru/design-patterns/creational-patterns
https://refactoring.guru/design-patterns/creational-patterns
https://refactoring.guru/design-patterns/creational-patterns
https://refactoring.guru/design-patterns/creational-patterns
https://refactoring.guru/design-patterns/factory-method
https://refactoring.guru/design-patterns/factory-method
https://refactoring.guru/design-patterns/factory-method
https://refactoring.guru/design-patterns/factory-method
https://refactoring.guru/design-patterns/factory-method
https://refactoring.guru/design-patterns/singleton
https://refactoring.guru/design-patterns/singleton
https://refactoring.guru/design-patterns/singleton
https://refactoring.guru/design-patterns/singleton
https://refactoring.guru/design-patterns/singleton

3.2. Structural Pattern (Compositional Structure)

3.2.1. Facade Pattern
• Provide a unified interface to a set of interfaces in a subsystem.
• Defines a higher-level interface that makes the subsystem easier to use
• Aggregate the selectively expose functionality

Examples:
• Layered architecture often use a facade as top-level access module
• Access parser, type checker, code generator through a compiler object
• A database facade exposes specific operations, but not arbitrary SQL oper-

ations

3.2.2. Flyweight Pattern
• Use sharing to optimize RAM usage by large

numbers of fine-grained objects that share some
immutable properties (intrinsic attributes)

• We cache the intrinsic data using the factory
method, the cached objects are called flyweights

class TreeType is
 field name
 field color
 field texture
 constructor TreeType(name, color, texture) { ... }
 method draw(canvas, x, y) is
 // 1. Create a bitmap of a given type, color &
texture.
 // 2. Draw the bitmap on the canvas at X and Y
coords.

// Flyweight factory decides whether to re-use existing
// flyweight or to create a new object.
class TreeFactory is
 static field treeTypes: collection of tree types
 static method getTreeType(name, color, texture) is
 type = treeTypes.find(name, color, texture)
 if (type == null)
 type = new TreeType(name, color, texture)
 treeTypes.add(type)
 return type

// The contextual object contains the extrinsic part of
the tree
// state. An application can create billions of these since
they
// are pretty small: just two integer coordinates and one
// reference field.
class Tree is
 field x,y
 field type: TreeType
 constructor Tree(x, y, type) { ... }
 method draw(canvas) is
 type.draw(canvas, this.x, this.y)

// The Tree and the Forest classes are the flyweight's
clients.
// You can merge them if you don't plan to develop the Tree
// class any further.
class Forest is
 field trees: collection of Trees

 method plantTree(x, y, name, color, texture) is
 type = TreeFactory.getTreeType(name, color, texture)
 tree = new Tree(x, y, type)
 trees.add(tree)

 method draw(canvas) is
 foreach (tree in trees) do
 tree.draw(canvas)

3.2.3. Adapter Pattern
• Convert the interface of a class into another interface clients expect.
• Adapter allows objects with incompatible interfaces to collaborate.

Scheme Example

3.2.4. Decorator Pattern
• Attach additional responsibilities to an object dynamically. Decorators provide a flexible alternative to sub-

classing for extending functionality.

Scheme Example

3.3. Architectural Pattern

3.3.1. Pipes and Filters
• Data flow is the only form of communication between components, there are no shared state.
• Data from a source flows in a linear path through Components (filters)¹ that operate on the data,

and Connectors (pipes)² that are connections between filters.

Properties:
• Data is processed incrementally as it arrives, output usually begins before all input is consumed
• Filters must be independent of each other (no shared state), and don’t know upstream or downstream

filters.

Examples:
• Unix pipes: grep search-text file | sort

¹Components - Read data from input ports, compute, write data to output ports; all green boxes in the figure are filters
²Connectors - Streams (typically asynchronous FIFO buffers), split-join connectors

3.3.2. Model-View-Controller Architecture
• popular for user interfaces, it contains following components:

a). Model contains the core functionality and data
b). One or more views display information to the user
c). One or more controllers handle user input

• Communication:
1. Change-propagation mechanism via events ensures consistency between user interface and model
2. If the user changes the model through the controller of one view, the other views will be updated

automatically
3. Model and view decoupled through controller

2

https://refactoring.guru/design-patterns/structural-patterns
https://refactoring.guru/design-patterns/structural-patterns
https://refactoring.guru/design-patterns/structural-patterns
https://refactoring.guru/design-patterns/structural-patterns
https://refactoring.guru/design-patterns/structural-patterns
https://refactoring.guru/design-patterns/facade
https://refactoring.guru/design-patterns/facade
https://refactoring.guru/design-patterns/facade
https://refactoring.guru/design-patterns/facade
https://refactoring.guru/design-patterns/facade
https://refactoring.guru/design-patterns/flyweight
https://refactoring.guru/design-patterns/flyweight
https://refactoring.guru/design-patterns/flyweight
https://refactoring.guru/design-patterns/flyweight
https://refactoring.guru/design-patterns/flyweight
https://refactoring.guru/design-patterns/adapter
https://refactoring.guru/design-patterns/adapter
https://refactoring.guru/design-patterns/adapter
https://refactoring.guru/design-patterns/adapter
https://refactoring.guru/design-patterns/adapter
https://refactoring.guru/design-patterns/decorator
https://refactoring.guru/design-patterns/decorator
https://refactoring.guru/design-patterns/decorator
https://refactoring.guru/design-patterns/decorator
https://refactoring.guru/design-patterns/decorator

3.4. Behavioral Pattern (Object Communication)

3.4.1. Observer Pattern
• Define a one-to-many dependency between objects so that when one object changes state, all its dependents

are notified and updated automatically
• Reduce coupling of generator and observer of events

• without it, the generator and its observers would be tightly coupled, as the generator would need to
maintain a direct reference to each observer and would need to know the specific interface or method to
call on each observer to notify it of events.

Scheme Example

// Trivial

//
class Game {
 std::vector<Player*> players;
 unsigned onTurn = 0;
 Reporter* reporter;

 public:
 Game(unsigned numberPlayers){
 for (unsigned i = 0; i != numberPlayers; ++i)
 players.push_back(new Player(i));
 reporter = new Reporter();}

 void turn(){
 reporter->turn();
 for (auto p: players) p->play(onTurn);
 onTurn = (onTurn+1) % players.size();}
}; // end of class Game

Game* constructGame(unsigned numberPlayers){
 auto game = new Game(numberPlayers);
 return game;
}

class Player {
 unsigned number;
 public:
 Player(unsigned n): number(n) {}

 void play(unsigned n){
 if (n == number){
 std::cout << number <<": I can play" << std::endl;
 } else {
 std::cout << number << ": an opponent plays, I wait."
 << std::endl;}
 }
}; // end of class Player

class Reporter {
 int turns = 0;
 public:
 void turn(){
 std::cout << "turn " << turns++ << std::endl;
 }
}; // end of class Reporter

// Observer Pattern
class Subject {
 // 1. One subject, which has a generic list of observers
 std::vector<Observer*> observers;
 public:
 // 2. 0-n observers who can subscribe to the subject.
 void subscribe(Observer* observer){
 observers.push_back(observer);
 }
 // 3. Subject notifies all observers of generated events.
 void update(){ for (auto o: observers) o->update();}
};

class Observer { public: virtual void update()=0; };

//
class Game: public Subject {
 unsigned players;
 unsigned onTurn = 0;

 public:
 Game(unsigned numberPlayers){ players = numberPlayers;}
 unsigned current_turn(){ return onTurn;}
 void turn(){ update(); onTurn = (onTurn+1) % players; }
}; // end of class Game

Game* constructGame(unsigned players){
 Game* game = new Game(players);
 game->subscribe(new Reporter());
 for (unsigned i=0; i<players; ++i)
 game->subscribe(new Player(game,i));
 return game;
}

class Player: public Observer{
 unsigned number;
 Game* game;
 public:
 Player(Game* g, unsigned num): game(g), number(num) {}

 // 4. Observer can then decide how to handle the events
 void update(){
 unsigned n = game->current_turn();
 if (n == number){
 std::cout << number <<": I can play" << std::endl;
 } else {
 std::cout << number << ": an opponent plays, I wait."
 << std::endl;}
 }
}; // end of class Player

class Reporter: public Observer {
 int turns = 0;
 public:
 void update(){
 std::cout << "turn "<<turns++<< std::endl;
 }
}; // end of class Reporter

3.4.2. Visitor Pattern
• Represent an operation to be performed on the elements of an object.
• Lets you define a new operation without changing the classes of the elements on which it operates

Examples: Double invocation
• where eval() was used within each subclass, replaced by a void accept(Visitor) instead
• a new class Visitor which contains a function virtual visitSubclass(Subclass obj)

• instead of eval(), we let an Evaluator class extends the visitor, and within there, we provide concrete
implementation how the visit should be done.

class Exp{
virtual double eval() const = 0;
};

class Literal: public Exp{
 double eval() const{
 return val;
}

struct Addition: public Exp{
 double eval() const
 {return left->eval() +
 right->eval();}
}

// PRE-VISITOR PATTERN
class Expression{
 ...
 double eval(){
 if (op == '=')
 return val;
 ...
 }
}

class Exp{
virtual void accept(Visitor) = 0;
};

class Literal: public Exp{
 double accept(Visitor v){
 v.visitLiteral)(this);
}

struct Addition: public Exp{
 double accept(Visitor v)
 {v.visitAddition(this);}
}

// VISITOR PATTERN
class Visitor{
 virtual void visitLiteral(Literal e) = 0;
 virtual void visitAddition(Addition e) = 0;
}

// 1.concrete implementation of how to visit
class Evaluator extends Visitor{
 double value;
 void visitLiteral(Literal e){
 value = e.value;
 }
 void visitAddition (Addition e){
 Evaluator l; e.left.accept(l);
 Evaluator r; e.right.accept(r);
 value = l.value + r.value;
 }
}

// 2.concrete for how to print
class Printer extends Visitor{...}

3.4.3. Strategy Pattern
• Defines a family of algorithms, puts each of them into a separate class, and makes their objects interchange-

able.

• Lets the algorithm vary independently from clients that use it.

• Based on composition: you can alter parts of the object’s behavior by supplying it with different strategies
that correspond to that behavior.

• Strategy works on the object level, letting you switch behaviors at runtime.

Scheme Properties
• Context (the original class)

• member variable: must have a field for storing a ref-
erence to one of the strategies. The strategy object per-
forms the execution strategy.execute(), not the con-
text object

• member function: The context isn’t responsible for
selecting an appropriate strategy. Instead, the client ex-
ecutes context.setStrategy(str)

This way the context becomes independent of concrete strate-
gies, so you can add new algorithms or modify existing ones
without changing the code of the context or other strategies.
Example

3.4.4. Template Method
• Turns a monolithic algorithm into a series of individual steps (that make up the skeleton of an algorithm)

but lets subclasses override specific steps of the algorithm without changing the structure defined in the
superclass.

• Based on inheritance: it lets you alter parts of an algorithm by extending those parts in subclasses.
• Template Method works at the class level, so it’s static.

Scheme Example

3

https://refactoring.guru/design-patterns/behavioral-patterns
https://refactoring.guru/design-patterns/behavioral-patterns
https://refactoring.guru/design-patterns/behavioral-patterns
https://refactoring.guru/design-patterns/behavioral-patterns
https://refactoring.guru/design-patterns/behavioral-patterns
https://refactoring.guru/design-patterns/observer
https://refactoring.guru/design-patterns/observer
https://refactoring.guru/design-patterns/observer
https://refactoring.guru/design-patterns/observer
https://refactoring.guru/design-patterns/observer
https://refactoring.guru/design-patterns/visitor
https://refactoring.guru/design-patterns/visitor
https://refactoring.guru/design-patterns/visitor
https://refactoring.guru/design-patterns/visitor
https://refactoring.guru/design-patterns/visitor
https://refactoring.guru/design-patterns/strategy
https://refactoring.guru/design-patterns/strategy
https://refactoring.guru/design-patterns/strategy
https://refactoring.guru/design-patterns/strategy
https://refactoring.guru/design-patterns/strategy
https://refactoring.guru/design-patterns/template-method
https://refactoring.guru/design-patterns/template-method
https://refactoring.guru/design-patterns/template-method
https://refactoring.guru/design-patterns/template-method
https://refactoring.guru/design-patterns/template-method

4. Testing
Testing

• Testing is the process of executing a program to find deviations in the program’s behavior from the
expected behavior as specified in requirements (functional/nonfunctional)

• A successful test should be able to:
• 1). Have a high probability of finding an error (cannot show the absence of bugs though but only

show the presence of bugs)
• 2). demonstrate that the software appears to be working according to the specification
• 3). collect data during testing to indicate software reliability & quality; reveal nonfunctional re-

gressions like performance loss

4.1. Example: Google Tests

TEST(CompleteBranchCov, FirstIsZero) {
 double actual = average(std::vector<int> { 0, 2, 4, 10 });
 double expected = 4.0;
 EXPECT_DOUBLE_EQ(actual, expected);
}

// fetch exceptions
TEST(CompleteBranchCov, EmptyArray) {
 EXPECT_THROW({
 average(std::vector<int> {});
 }, std::logic_error);
}

4.2. Test Stages

Test
Stages Goal & Content

Unit Test

To confirm that the subsystem is correctly coded and implements the required function-
ality.

• testing individual subsystems, including functions, (group of) classes

• Use parameterized unit tests to achieve a reasonable test coverage.

• 1). Parameterize with input data and expected output data (provide expected out-
put data with INSTANTIATE_TEST_SUITE_P)

• 2). Validate obtained output by asserting relevant properties (std::is_sorted(),
ASSERT_EQ(...,...), ASSERT_LE(...,...), ASSERT_FALSE(j == data.size()) etc.)

• 3). Validate against a master solution (eg. falcon_sort(data) against
std::sort(data))

Example:
// 1. Test fixture providing initialized account
class ParametricSavingsAccountTests: public testing::TestWithParam<std::tuple<int,
int>>{
 protected:
 SavingsAccount acc;
}

// 2. Test data
const std::vector<std::tuple<int,int>> DepositThenWithdraw_data = {
 {99,1},
 {50,50}
};

// 3. Parametric test driver
TEST_P(ParametricSavingsAccountTests, DepositThenWithdraw){
 auto [deposit_amount, withdraw_amount] = GetParam();

 acc.deposit(deposit_amount);

 acc.withdraw(withdraw_amount);

 ASSERT_EQ(acc.balance(), deposit_amount - withdraw_amount);
}

// 4. Instantiate test driver for each test data entry
// data represented as a vector of pairs of {deposit, withdraw} amount
INSTANTIATE_TEST_SUITE_P(
DepositThenWithdraw,
ParametricSavingsAccountTests,
testing::ValuesIn(DepositThenWithdraw_data)
);

• Test execution (for other test stages similarly)
1. Regression testing: re-running tests to ensure the software still performs as expected

after a change.
2. Automate as much as possible

Integra-
tion Test

To test interfaces between subsystems;

• testing groups of subsystems and eventually the entire system
• different strategies to decide the call hierarchy (eg. big bang that includes all compo-

nents for testing or bottom-up/top-down integration)

System
Test

To determine if the system meets the functional and nonfunctional requirements;

• testing the entire system

Acceptance
Test

To demonstrate that the system meets customer requirements and is ready to use;

• performed by the client
• alpha test: The client uses the software at the developer’s site; software used in a con-

trolled setting, with the developer ready to fix bugs
• beta test: conducted at client’s site; software gets a realistic workout in the target

environment

Indepen-
dent Test

To efficiently find flaws and failures;

• Testing done by independent test engineers to prevent author bias, though while coding
developers should also write down unit & integration tests

• testers and developers collaborate in developing the test suite
• the testing team is not solely responsible for the software quality, the quality should

be assured by a good software development process

4.3. Overview: Testing Strategies

Test Strategies Content

Functional Testing

Test each case of the specification, eg. testing for all cases of discriminant in
𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0;

• black-box testing: tests a unit against its requirements, note that tests are
not derived from code or design

• Advantage: Tests can be written without access to the code, or having to un-
derstand it; Tests are suitable for all possible implementations; Good chance
of revealing incorrect or missing functionality

• Disadvantage: Often not effective for detecting coding errors, e.g. buffer
overflows, memory management, faulty optimizations and design flaws, e.g.
too much coupling; Quality of the resulting test suite difficult to access auto-
matically;

Structural Testing

To create tests that exercise as much of the code as possible

• white-box testing: look at code or design to derive tests from UUT; Use
design knowledge about system structure, algorithms, and data structures to
determine test cases

• Advantage: Enables code coverage metrics and automated computation; Ef-
fective at detecting coding errors (since the code needs to be studied to derive
test cases); Exploring all execution paths may reveal arbitrary coding errors;
Closer look at code may reveal additional problems (design,

performance, security, …)
• Disadvantage: Requires knowledge about the internals, which testers and

clients shouldn’t need to have → not well-suited for system tests; Time-con-
suming to increase or achieve total coverage; Implementation-specific tests
more likely to become obsolete over time; Less effective at uncovering only
partially implemented requirements

4.4. Functional Testing
Equivalence Classes

• An equivalence class is a collection of test cases/inputs that provoke a similar functional behavior in
the unit under test.

1. Partition the total value space
2. Boundary testing: select elements at the edge cases of each equivalence class
3. Combine concrete inputs for testing for each equivalence class
• Performing functional testing is dividing input values using case distinctions

Semantic Constraints

• Use problem domain knowledge to remove unnecessary combinations by enforcing semantic con-
straints on combinations

• Advantages:
• potentially reduces no. test cases
• increases coverage by identifying semantic equivalence classes (not just by looking at involved

types)
• may uncover issues with specifications

• Disadvantages:
• still, too many combinations remain

Pair-wise Combinations (combinatorial testing for two or less inputs)

• Motivation: Empirical evidence suggests that most bugs do not depend on the interaction of many
variables. Most errors are triggered by interactions of 2-3 variables.

• Goal: To focus on all possible combinations of each pair of inputs
• Examples: Given voi fun(bool, a, b, c)

• Advantages:
• Complexity: No. test cases grows logarithmically in n and quadratic in d - 𝑂(log(𝑛), 𝑑2), with n

as no. parameters and d as test values per parameter. d can be influenced by the tester
• This reduces the number of tests necessary to detect bugs in the code reliably; Suitable when

many system configurations (hardware, OS, database, application server, etc.) need to be tested.

4

4.5. Structural Testing
Structural Testing

1. Control flow testing (control-flow graphs)
2. Coverage (statement, branch, path, loop)
• Approach: white-box testing
• Goal: cover a large portion of the unit under test’s code

4.5.1. Control-flow graphs (CFGs)

Control-flow graphs (CFGs)

• Control-flow graphs (CFGs) are typical internal representations in code analysis tools, including
compilers where:

1. Nodes are basic blocks
2. Edges between basic blocks bb₁, bb₂ with condition c denote that:

• the execution after the last statement of block bb₁ continues with the first statement of block bb₂
if condition c holds.

3. A node without an incoming edge is an entry node; without an outgoing edge is an exit node and a
node can be made unique by introducing dedicated, empty blocks

• The CFG can serve as a quality criterion for test cases: the more parts (nodes, edges, paths) are
executed, the higher the chance of uncovering a bug.

Example 1:
std::cin >> n;
for (i = 0; i < n; ++i){
 --n;
 if (...) break;
}
std::cout << i;

Example 2:
// IS_SORTEDASC
if (
 is_sorted(data.cbegin(), data.cend())
) return;

// count = EMPTY
auto count
 = std::vector<unsigned>(max+1,0);

for (auto elem: data){
 if (max < elem)
 throw invalid_argument("...");
 ++count[elem];
}

// SORT
auto it = data.end() - 1;
for (unsigned i = 0; i < count.size(); ++i){
 for (unsigned c = count[i]; 0 < c; --c){
 *it = i;
 --it;
 }
}

4.6. Coverage
Coverage

• Coverage is a good way of measuring the adequacy of tests
• white-box approach, computed relative to control-flow graph
• statement and branch coverage are standard, other measures exist
• ⚠ High coverage does not imply well-tested code (bugs could still exist), but low coverage implies

the code is not well-tested
➡ DON’T BLINDLY OPTIMIZE FOR COVERAGE NUMBERS

• Perfect coverage (exhaustive testing) is infeasible due to loops, large state space etc.
)

State-
ment

• Assess the quality of a test suite by measuring how many statements of the CFG it exe-
cutes (one can detect a bug in a statement only by executing the statement)

• can also be defined on basic blocks
• Example: achieve 100% statement coverage with three test cases.

1. d = {1,3,2} (80% statement coverage as this single test case executes 8 out of 10 state-
ments), m=3;

2. d = {1,3,2},m=0;

3. d={1,2,3}, m=3 (this uncovers the bugs (??))

Branch

• Test all possible branches (edges with conditions) in the control flow; Most widely-used
adequacy criterion in industry

• Advantage: leads to more thorough testing than statement coverage
• complete branch coverage implies complete statement coverage
• But “at least n% branch coverage” does not generally imply “at least n% statement

coverage”

Recall example 4 with the invalid file problem: We still have the same CFG,
and we can use two test cases to cover all branches
1. filename denoting a readable file
2. filename denoting a non-existing file

=> The second test case exposes the bug

• Limitation: Possible to have 100% branch coverage but still cannot expose the bug

// 100% branch coverage with two tests
// 1. x=1,y=1; 2. x=0,y=0 => but if x=0,y=1 then z=0 while y/z executes
int foo(int x, int y){
 int z;
 if (x!=0) z = x - x/2;
 else z = x;
 if (0<y) return y/z;
 else return z;
}

• Solution: Cover all statements under all conditions, cover all possible branch combina-
tions.

• Above we covered all branches but not through all branch combinations. Here adding
tests 3. x=1,y=0; 4. x=0,y=1 [This will hit the bug]. In all we cover the paths b1→!b2
and !b1→b2

•

Path
•

Goal: find test cases that cover every possible unique path through the CFG.

• A path is a valid sequence of CFG nodes n₁,…,nₖ (basic blocks) that start with the entry
node and end with the exit node. There are edges between nᵢ and nᵢ₊₁

• Path coverage is more thorough than statement & branch, but finding test cases can be
even more time-consuming

⚠ Path coverage cannot be measured when the code has an unknown no. loop iterations.
Complete path coverage is generally not feasible for loops, loop coverage is an alternative.
• Limitation: Loops introduce arbitrarily many CFG paths, here branch conditions are

omitted for brevity

Loop
For 100% loop coverage, each loop must be executed
1. exactly zero times
2. exactly one time
3. more than once consecutively

• Loop coverage should be combined with other adequacy criteria such as statement or
branch coverage

5

5. Formal Methods
Symbolic Execution

• compute the symbolic constraints per path, and then solve these constraints such that we have con-
crete inputs that explore all paths

• Path exploration strategies: to avoid exploring infeasible paths and wasting our time, symbolic
execution engines may include heuristics that
1. Solve constraints at every branch point to quickly obtain the first results
2. Apply different exploration strategies (eg. BFS, DFS, prefer shallow paths, complex conditions…)

Concolic Execution = Concrete (Testing) + Symbolic

• assign concrete values to symbolic inputs and execute the given program both concretely and sym-
bolically at the same time

• Concretization: In case the SMT solver fails to solve any constraint, constraints of a path can be
simplified by plugging user-provided initial values into one of the symbols.

5.1. Example: Symbolic Execution
1. A symbolic state 𝜎

• maps variables to symbolic expressions
• is used to evaluate program expressions to symbolic expressions
• is updated by assignment statements

2. Path conditions 𝜋 are the conditions under which a path is taken
• we have a symbolic state per program point

We can solve the final constraint sets at the bottom-most leaves

Alloy = Logic + Language + Analysis

• Alloy is a formal modeling language based on set theory
• An alloy model specifies a collection of constraints of a model and finds structure that satisfy them

• generate sample structures
• generate counterexamples for invalid properties
• visualize structures

5.2. Concolic Execution

• (a). The !b1 route will be taken given the initial inputs x = y = 13.
• (b). Afterwards, the condition is negated: X0–32 = Y0*Y0. The solver is queried for a model and returns

X0 = 36, Y0 = 2. It reaches the b1 and then the !b2 branch.
• (c). Negating !b2 and querying the solver yields new inputs, e.g. X0 = 81 and Y0 = 7. The concolic

execution will take the b1 and then the b2 branch.
• All paths have been explored.

(a).

(b).

(c).

6. Alloy Cheatsheet
6.1. Signatures

General // x ⊂ A × B
sig A { x : B }

Extend • If A and B each extends C, then A and B are disjoint
sig name extends superclass {...}

// Example: Subtyping
sig FSObject {}
sig File extends FSObject {}
sig Dir extends FSObject {}

Abstract abstract sig name {...}

abstract sig FSObject { parent : lone Dir} // 𝑝𝑎𝑟𝑒𝑛𝑡 ⊂ 𝐹𝑆𝑂𝑏𝑗𝑒𝑐𝑡
× 𝐷𝑖𝑟
sig File extends FSObject {}
sig Dir extends FSObject { contents: set FSObject} // 𝑐𝑜𝑛𝑡𝑒𝑛𝑡𝑠 ⊂
𝐹𝑆𝑂𝑏𝑗𝑒𝑐𝑡 × 𝐹𝑆𝑂𝑏𝑗𝑒𝑐𝑡
one sig Root extends Dir

Subset N.B. Subset signatures are not necessarily pairwise disjoint, and may have
multiple parents.
sig name in sup {...}
sig name in sup1 + sup2 + ... {...}

6.2. Paragraphs

Facts // `Name` is optional
fact name { formulas}

// Example
fact {all n: Node | n!=n.next} // ∀n | (n,n) ∉ next

Predicates Predicates are either true or false; they are named, parameterized formulas.
pred pred_name { F}
pred pred_name [x1: e1, ..., xn: en] { F}

// 1. Use predicate in a function (see below)
// 2. Find instance of a predicate uses `run pred_name`, function can also
be run but it is less common

Functions The body expression E is evaluated to produce the function value; the bounding
expression e describes the set from which the result is drawn.
fun name [x1:e1, ...] : e { E}

// Example: returns the set of all non-occupied seats in flight f
fun freeSeats [f: Flight]: set Seat{
 {s : f.seats | no f.seating[s]}
}
// Example: FSObject using predicate
fun leaves[f: FSObject]: set FSObject{
 {x: f.*contents | isLeaf[x]}
}

Assert Unlike predicates, assertions don’t bind arguments
assert name { F }

Check Asser-
tions

Use check to look for counter-examples
check name for 2 but 1 sig1, 5 sig2

Run Use run to request an instance satisfying the predicate; One can also specify scope.
Defaults to 3.
run name for 2 but 1 sig1, 5, sig2

Let let decl, decl2 ... | expression
let decl, decl2 ... { formulas }

6.3. Declarations
Fields of signatures, function arguments, predicate arguments, comprehension variables, and quantified vari-
ables all use the same declaration syntax:

Multiplicity of
fields

• no: empty set (not some e); e = ∅
• some: non-empty set (not no e); e ≠ ∅
• one: singleton set (default); |e| = 1
• lone: singleton or empty set; |e| ≤ 1

6

• set: zero or more elements (any set);

Quantification • Constraint sets/relations
all x : e | F // for all x in set e, fact F holds
all x : e1, y: e2 | F
all x, y : e | F // for all x,y (duplicate possible) in e, fact F holds
all disj x, y : e | F

• Specifying element amounts
all x : e | F
some x : e | F
no x : e | F
lone x : e | F
one x : e | F

• Acyclic
• Contents-relation is acyclic no d: Dir | d in d.^contents

Special Ex-
pressions

• Empty set: none
• Universal set: univ
• Identity function: iden

Distinct Values Using disjoint disj, requires distinct S atoms to have distinct f values
• sig S { f : disj e}

• all a, b : S | a != b implies no a.f & b.f

• all disj a, b : S | disj [a.f, b.f]

Relations • r : e1 -> e2

Bounding expression may denote a relation
• r : e1 -> one e2 // Total function (`-> one`)

r : e1 -> lone e2 // Partial function (`-> lone`)
r : e1 one -> one e2 // Bijection (`one -> one`)

Ternary Rela-
tion

// 𝑚𝑎𝑝 ⊂ 𝐴 × 𝐼 × 𝐵
sig A{ map: I -> B} // "->" is Cartesian product
a.map[i] // assuming a, i are singletons {b ∈ B | (a,i,b) ∈ map}

// Example: 𝑒𝑛𝑟𝑜𝑙𝑙𝑚𝑒𝑛𝑡 ⊂ 𝑈𝑛𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 × 𝑆𝑡𝑢𝑑𝑒𝑛𝑡 × 𝑃𝑟𝑜𝑔𝑟𝑎𝑚
sig University{
 students: set Student,
 enrollment: students set -> one Program
}

6.4. Element Retrieval & Operators

Joins • relational join: a.x meaning {b ∈ B | (a,b) ∈ X}

• box join: x[a] := a.(x)

Dot binds tighter than box, so a.b[c] ≡ (a.b)[c]
NOTE: Left associativity, equivalent statements
• a.b.c

• (a.b).c

Unary • transpose: ~r
• ~R = { (r2 , r1) ∈ U × U | (r1, r2) ∈ R}

• eg. In an undirected graph, for each edge, the reverse edge is also con-
tained in the graph g.adj = ~(g.adj)

• positive transitive closure: ^r := r + r.r+ r.r.r + ...
• eg. descendants = {a,d: Person | d in a.^children}
• eg. predicate describes a graph free of cycles, using n.*(g.adj) would

be wrong!

 pred cycleFree(g: Graph){
 no n: g.nodes | n in n.^(g.adj)
 }

• reflexive transitive closure: *r := iden + ^r

Set operations • Union: a + b
• Intersection: a & b
• Difference: a - b

Restrictions • domain restriction: X <: R {(𝑟1, 𝑟2, … , 𝑟𝑛) ∈ 𝑅 | 𝑟1 ∈ 𝑋}

• range restriction: R :> X {(𝑟1, 𝑟2, … , 𝑟𝑛) ∈ 𝑅 | 𝑟𝑛 ∈ 𝑋}

Override • relational override: p ++ q P - (domain[q] <: p) + q
• Set representation: {𝑝 ∈ 𝑃 | 𝑝₁ ≠ 𝑞₁ ∀𝑞 ∈ 𝑄} + 𝑞

Cardinality • Number of tuples in a: #a
• Equals: =

// eg. sum of integer expression ie for all singletons x drawn from e
sum x: e | ie

// eg.2 all bags have 3 or less marbles
all b: Bag | #b.marbles =< 3

// the sum of the marbles across all bags equals the total no. marbles
#Marble = sum b: Bag | #b.marbles

Logics • Negation: not, !
• Conjunction: and, &&
• Disjunction: or, ||
• Implication: implies, else, =>

• boolean implies expression

• boolean implies expr1 else expr2

• Bi-implication: iff, <=>

NOTE:
1. p=>q=>r equivalent to p=>(q=>r)
2. else binds to the nearest possible implies, equivalent statements:

• p=>q=>r else s

• p=>(q=>r else s)

Arithmetic Apply only to integer expressions
• plus, minus, mul, div, rem

Equivalent statements: plus[x][1], plus[x,1]; x.plus[1], 1.(x.plus)

6.5. Dynamic Behavior

// steps as fact
fact execution {
 // initial state is the first in order
 init[FileSystem]

 // states created via one of the ops
 // removeAll, add etc. are operations
 always {
 { some o: FSObject | removeAll[FileSystem,o] }
 or
 { some o: FSObject, d: Dir |
add[FileSystem,o,d] }
 }
}

// steps as predicate
pred Steps {
 init [first]
 and all s: State - last |
 some sem: Semaphore, t: Thread |
acquire[s,s.next,t,sem]
 or
 some sem: Semaphore, t: Thread |
release[s,s.next,t,sem]
}

//∄No state s.t all threads wait for a
semaphore.
assert StepsDoNotCreateDeadlock{
 Steps =>
 no s: State | all t: Thread | some s.waits[t]
}

6.5.1. Using Temporal Notion in Alloy 6

// Example: Using after,always, eventually and
until
some n: Node {
 n in b.loc.edges
 after b.loc = n
}

some b: Ball | always move[B]
all n: Node | eventually b.loc = n
move[b] until b.loc = Last

// Pre Alloy6
pred move[from: State]{
from.next.loc != from.loc
}
fact "always move"{
First.loc = Ping
all p: State – Last | move[p]
}
pred show{}
run show for exactly 5 State

// Post Alloy6
pred move[from: State]{
from.loc' != from.loc
}
fact "always move"{
State.loc = Ping
always move[State]
}
pred show{}
run show for 5..5 steps

6.5.2. Mutable Relations
Using var keyword on a field to specify mutability

sig E {}

sig Array {
 length: Int, // relation length is static
 var data: // with "var", the relation `data` is
mutable
 {i: Int | 0 <= i && i < length } -> lone E
}{
 0 <= length
}

6.6. Equivalent Temporal Statements

// 1. equivalence of "eventually X" and "true until X"
assert Eventually {
 {eventually Variable.col = Red} <=>
 {Variable.col in Color until Variable.col = Red}
}

// 2. equivalence of "always X" and "not eventually not X"
assert Always {
 {always Variable.col = Red} <=>
 not {eventually not Variable.col = Red}
}

6.7. Traces

Define the temporal behavior of the model
1. Initialize first state using init[state]
2. Constraint subsequent states using LTL formu-

las, such as always or until

fact traces {
 init[state]
 always{
 (some ... | op1[s,...]) or
 ...
 (some ... | opn[s,...])
 }
}

7

7. Appendix: UML Sequence Diagrams

The Unified Modeling Language UML

UML is a modeling language
• Using text and graphical notation
• For documenting specification, analysis, design, and implementation

Draw a sequence diagram for the following use cases:
Use case 1: Delete the message.
a. User: The user asks the system to delete the i-th message.
b. System: The system checks if the message is locked (extension point).
c. System: The message is not locked, so the system deletes the message and notifies the user.
Use case 2: Fail to delete the message (extends use case 1).
a. …
b. …
c. System: The message is locked, so the system displays an error to the user.

Solution:

7.1.1. Example: Vaccination
A Vaccination Street contains (→) two or more Cabines and an arbitrary number of Persons. A Doctor can
have one and only one of the following roles: an Interrogator asking medical questions, a Vaccinator performing
the injection, or an Assistant. A cabine has (◇-) exactly one vaccinator and interrogator respectively and up to
two assistants. A Person has a unique Id, is assigned to (→) a Registration Desk and belongs to a Vaccination
Category. The vaccination category is either A,B,C.
Other syntax: Each heater has access to (♦-) one temperature sensor

(a) Draw a sequence diagram that depicts a person getting vaccinated

class Person;
class Cabine {
 public:
 Cabine();
 bool is_free = true;
 void vaccinate(Person* person);
};

class VaccinationStreet {
 public:
 VaccinationStreet();
 std::vector<Cabine> cabines;
 std::vector<Person> persons;
};

class RegistrationDesk {
 public:
 void register_p(int person_id);
 void deregister_p(int person_id);
 VaccinationStreet* check_person(int person_id);
};

class Person {
 public:
 int person_id;
 bool is_vaccinated = false;
 RegistrationDesk* registration_desk;

 void get_vaccinated() {
 VaccinationStreet* street
 = registration_desk->check_person(person_id);

 if (street)
 {
 registration_desk->register_p(person_id);
 for (auto &c : street->cabines)
 {
 if (c.is_free) c.vaccinate(this);
 }
 registration_desk-
>deregister_p(person_id);
 }
 }
};

Hints:

1. Draw out the users, identify objects that are
used, and list the corresponding classes in boxes.
Use a pencil to full-sized demo boxes for life-
scope.

• eg. registration_desk is created before
street

VaccinationStreet* street
= registration_desk-
>check_person(person_id);

2. Draw arrows for methods; Arrows of member
functions always end in the class of objects
themselves, and start from the class where it
gets called. Adjust the size of the life-scope
boxes.

• Note that for if, for, and while conditions, the
arrow for directions is double-sided!

3. Identify scopes alt and loop, the scope needs
to include all methods that are called within
the code scope. Add conditions such as alt
[c.is_free] to the scopes. Use dashed lines
(---) to divide cases when needed.

7.2. Mapping Models to Code

#include <memory>
#include <vector>

class Project { public: /* ... */ virtual ~Project() {} };
class DevelopmentProject : public Project { /* ... */ };

// generalization/superclass
class Employee {
 public:
 // ...
 virtual std::vector<std::shared_ptr<Project>> GetProjects() const;
 virtual void AssignProject(std::shared_ptr<Project> project);
};

// specialization/subclass
class SummerIntern : public Employee {
 public:
 // ...
 virtual std::vector<std::shared_ptr<Project>> GetProjects() const {
 return { project_ };
 }

 virtual void AssignProject(std::shared_ptr<Project> project) {
 if (project_)
 throw std::logic_error("Cannot assign multiple projects");

 auto development_project =
 std::dynamic_pointer_cast<DevelopmentProject>(project);
 if (!development_project)
 throw std::logic_error("Cannot assign non-development project");

 // Type system prevents us from assigning a pointer to a non-development project.
 project_ = development_project;
 }

 private:
 std::shared_ptr<DevelopmentProject> project_;
};

7.2.1. Past Exam

8

	Software Engineering
	Specifications and Modelling
	Modularity
	Design Patterns
	Creational Pattern (Object Creation)
	Factory Method
	Static Factory Method
	Singleton

	Structural Pattern (Compositional Structure)
	Facade Pattern
	Flyweight Pattern
	Adapter Pattern
	Decorator Pattern

	Architectural Pattern
	Pipes and Filters
	Model-View-Controller Architecture

	Behavioral Pattern (Object Communication)
	Observer Pattern
	Visitor Pattern
	Strategy Pattern
	Template Method

	Testing
	Example: Google Tests
	Test Stages
	Overview: Testing Strategies
	Functional Testing
	Structural Testing
	Control-flow graphs (CFGs)

	Coverage

	Formal Methods
	Example: Symbolic Execution
	Concolic Execution

	Alloy Cheatsheet
	Signatures
	Paragraphs
	Declarations
	Element Retrieval & Operators
	Dynamic Behavior
	Using Temporal Notion in Alloy 6
	Mutable Relations

	Equivalent Temporal Statements
	Traces

	Appendix: UML Sequence Diagrams
	Example: Vaccination
	Mapping Models to Code
	Past Exam

